Смекни!
smekni.com

Разработка состава и технологии получения мази, содержащей биокомплекс кобальта с фуразолидоном (стр. 4 из 6)

К 90-м гг. XX в. появились публикации о микробной контаминации почти всех используемых в практике медицины типов антисептиков и обнаружении в них представителей всех систематических групп бактерий и грибов. Основным контаминантом антисептиков являются псевдомонады, часто обнаруживаются условно-патогенные энтеробактерий: клебсиеллы, энтеробактер, серратии и эшерихии. В йодофорах, хлорактивных препаратах, перекиси водорода, фура-цилине обнаруживаются золотистые, эпидермальные и сапрофитные стафилококки.[23,45,56]

Внедряемые в клиническую хирургию антисептики йодофоры, декаметоксин, мирамистин, бетадин, ксимедон, куриозин недоступны в настоящее время для широкого круга населения и ЛПУ из-за чрезмерной цены. [43,56]

Вышесказанное определяет необходимость изыскания экономически выгодных высокоэффективных препаратов для лечения инфекционных заболеваний.


2. ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

2.1 Фуразолидон как антимикробный препарат

N- (5-Нитро-2-фурфурилиден) -З-аминооксазолидон-2

C8H7N3O5M. в. 225,16

Описание. Желтый или зеленовато-желтый порошок без запаха, слабо горького вкуса. Растворимость. Практически нерастворим в воде и эфире, очень мало растворим в 95% спирте.

Подлинность. 0,05 г препарата смешивают с 20 мл воды и 5 мл 30% раствора едкого натра и нагревают; появляется бурое окрашивание.

0,01 г препарата растворяют в 3 мл (плотность не более 0,945); появляется желтое окрашивание. Прибавляют две капли 1 н. раствора едкого кали в 50% спирте; появляется фиолетовое окрашивание, но на смоченных этим раствором стенках .пробирки окраска раствора синяя. 1 мл фиолетового раствора разбавляют водой до 10 мл; появляется желтое окрашивание. После прибавления нескольких капель 1 н. раствора едкого кали в 50% спирте цвет раствора не меняется.

Температура плавления 253-258° (с разложением).

Посторонние вещества. 0,2 г препарата смешивают с 1 мл воды и 0,5 мл разведенной серной кислоты. Смесь нагревают до кипения и осторожно проверяют запах выделившихся паров; не должно появляться ни запаха бензальдегида, ни запаха уксусной кислоты.

Хлориды. 0,5 г препарата смешивают с 25 мл воды при сильном взбалтывании и фильтруют через двойной фильтр. 10 мл прозрачного фильтрата должны выдерживать испытание на хлориды (не более 0,01% в препарате).

Сульфаты. 10 мл того же фильтрата должны выдерживать испытание на сульфаты (не более 0,05% в препарате).

Потеря в: весе при высушивании. Около 0,5 г препарата (точная навеска) сушат при 100-105° до постоянного веса. Потеря в весе не должна превышать 0,5%.

Сульфатная зола и тяжелые металлы. Сульфатная зола из 0,5 г препарата не должна превышать 0,1% и должна выдерживать испытание на тяжелые металлы (не более 0,001% в препарате).

Мышьяк. 0,5 г препарата должны выдерживать испытание на мышьяк (не более б*,0б01% в препарате).

2.2 Количественное определение фуразолидона

Около 0,1 г препарата (точная навеска) помещают в мерную колбу емкостью 50 мл, прибавляют 30 мл диметилформамида (плотность не более 0,945), закрывают колбу притертой пробкой. После растворения препарата прибавляют 2 мл 0,05 н. спиртового раствора едкого кали, перемешивают, охлаждают до 20°, доводят объем раствора диметилформамидом до метки и опять хорошо перемешивают.

0,6 мл раствора помещают в мерную колбу емкостью 100 мл, доводят объем раствора водой до метки и точно через 20 минут, считая с момента прибавления 0,05 н. спиртового раствора едкого кали, определяют оптическую плотность полученного раствора на фотоэлектроколориметре в кювете с толщиной слоя 0.5 см и фиолетовым светофильтром с длиной волны около 360 нм. Во вторую кювету наливают воду.

Во время проведения опытов температура растворов должна быть 20±1°. Место приготовления растворов не должно быть ярко освещено.

Содержание фуразолидона в процентах (X) вычисляют по следующей формуле:


где D - оптическая плотность испытуемого раствора;

Е1%см - удельный показатель поглощения стандартного образца фуразолидона, определенный в тех же условиях; а - навеска препарата в граммах. Содержание C8H7N3O5 в пересчете на сухое вещество должно быть не менее 98,0% и не более 102,0%.

2.3 Метод диффузии в агар

Применение новых типов мазевых основ требует строго измерять и контролировать активность мазей. В связи с этим уделяется все больше внимания изучению высвобождения лекарственных веществ из мазевых основ в клинических и фармацевтических исследованиях.

В настоящее время имеется много различных методов по определению высвобождения лекарственных веществ мазевыми основами.

Для оценки процесса высвобождения веществ из мазей и определения их антимикробной активности использовали метод диффузии в агар, описанный в ГФ XI издания.

Исследования проводят в асептических условиях. В качестве тест-культур используют: StaphilococcusaureusATCC6538-P, EscherichiacoliATCC25922, BacillussubtilisATCC 6633, BacilluscereusATCC 10702, PseudomonasaeruginosaATCC9027, CandidaalbicansATCC885-653.

Смесь культур производят стерильным изотоническим растворов натрия хлорида и разводят по стандарту мутности Государственного контрольного института медицинских и биологических препаратов имени Л.А. Тарасевича до образования взвеси с нужной микробной нагрузкой.

Питательную среду (мясо-пептонный агар расплавляют, охлаждают до 40˚ С и вносят в нее соответствующую культуру тест-микроорганизма. Затем разливают в чашки Петри и “подсушивают” в термостате в течении 30 минут при 37˚ С. На поверхность засеянной среды, на равном расстоянии друг от друга и от края чашки расставляют стерильные цилиндры единого размера и массы (высота 10±0,1 мм, внутренний диаметр 6,0±0,1 мм) из нержавеющей стали. В цилиндры каждой чашки помещают равное количество исследуемого образца 0,1 г. Для уменьшения влияний колебаний во времени между внесением мазей и началом термостатирования, чашки выдерживают при комнатной температуре в течении часа. После 18 часов инкубирования при температуре (36±1˚ С) определяют диаметр зон угнетения роста микроорганизмов (мм). Диаметр или ширина зоны торможения характеризует степень диффузии лекарственного вещества из мазевой основы.

2.4 Используемая посуда и оборудование

1) весы аптечные;

2) колба Бунзена;

3) весы торсионные;

4) электромагнитная мешалка;

5) электрическая плитка;

6) конические колбы;

7) фиксированные пипетки;

8) химические стаканы;

9) чашки Петри;

10) водяная баня;

11) сушильный шкаф;

12) воронка Бюхнера;

13) коническая колба;

14) термостат;

15) ножницы;

16) эксикатор;

17) карандаш по стеклу;

18) фарфоровая чашка;

19) пробирки;

20) насос Камовского;

21) цилиндр мерный;

2.5 Используемые химические реактивы и материалы

1) этиловый спирт;

2) метиловый спирт;

3) парафин;

4) фуразлидон;

5) вода дистиллированная;

6) физиологический раствор;

7) сульфат кобальта;

8) тест-культуры;

9) дикаин;

10) глицерин.


3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3.1 Разработка состава и технологии получения мази, содержащей биокомплекс кобальта с фуразолидоном

В работе были использованы химические, физико-химические, микробиологические методы исследования. Комплексные соединения кобальта получали по ранее разработанной методике.

Антимикробная активность фуразолидона и его комплексного соединения кобальта изучалось совместно с кафедрой микробиологии методом диффузии в агар в отношении ряда стандартных микроорганизмов. Полученные результаты представлены в таблице 1.

Таблица 1 - Антимикробная активность фуразолидона и его комплексного соединения с кобальтом

Основной антимикробный компонент Диаметр зоны задержки роста тест-штаммов, мм (М±m)
Staphylococcus aureus ATCC 209-P Escherichia coli ATCC 25922 Bacillus subtilis ATCC 6633 Bacillus cereus ATCC 10702
Фуразоли-дон 16,2±0,2 16,3±0,2 15,8±0,3 16,2±0,3
Комплекс кобальта с фуразолидоном 20,3±0,4 24,0±0,5 21,3±0,5 22,0±0,5

Из приведенных видно, что максимальная антимикробная активность наблюдается в случае комплексного соединения кобальта с фуразолидоном, т.е. комплексообразование с лекарственным средством способствует увеличению антимикробной активности фуразолидона.

Для разработки состава и технологии получения антимикробных гелей в качестве гелеобразователя использовались: модифицированное производное целлюлозы - натрийкарбоксиметилцеллюлоза (Na-КМЦ), коллаген и гидрогель метилкремниевой кислоты (энтеросгель), а также эти соединения в различных сочетаниях. В ранее выполненных дипломных работах было установлено, что эти соединения являются хорошими гелеобразующими основами и способны с достаточной скоростью высвобождать лекарственные препараты в водные растворы натрия хлорида, соляной кислоты.