Смекни!
smekni.com

Синегнойная палочка (стр. 2 из 3)

Заподозрить синегнойную инфекцию позволяет характерное окрашивание ран, перевязочного материала в сине-зелёный цвет. Для выделения идентификации возбудителя используют культуральный метод. Забор материала следует производить до начала антибактериальной терапии. Растет на простых питательных средах, в частности используют агар Мюллер-Хинтон. При росте на плотных средах дает характерный феномен радужного лизиса, развивающийся спонтанно, при образовании пигмента окрашивает некоторые среды в зелёный цвет. Используется метод пиоцианинотипирования, основанный на том, что штаммы резистентны к своему пиоцианину и обладают различной чувствительностью к пиоцианинам других штаммов. На жидких средах дают рост в виде поверхностной пленки, со временем образуется помутнение, распространяющееся сверху вниз.

2. Патогенез поражений

Патогенное действие P. aeruginosa обусловлено образованием веществ, проявляющих свойства экзотоксинов, и высвобождением эндотоксинов при гибели и распаде бактериальной клетки.

Экзотоксины бактерий представлены продуктами жизнедеятельности с широким спектром биологической активности. Среди них основное значение имеют:

1. Экзотоксин А – белок с молекулярной массой 66 000–72 000 Д. Молекула токсина состоит из одной полипептидной цепи с 4 дисульфидными мостиками, свободных сульфгидридных групп не содержит. Токсин термолабилен, расщепляется трипсином, панкреатической эластазой, проназой, а также распадается под действием собственных протеолитических ферментов. Механизм действия связан с модификацией белков через АТФ-рибозилирование. Его мишень – фактор элонгации 2 (ФЭ-2); следствие – нарушение организации матрицы белкового синтеза (аналогичным свойством обладает дифтерийный токсин). Действие проявляется (в экспериментах на подопытных животных) в токсическом действии общего характера: отеках, некрозах, гипертензии с последующим коллапсом, метаболическом ацидозе, дыхательной недостаточности, параличе внутриклеточного синтеза белков и т.д.

2. Экзоэнзим S – белок с АДФ-трансферазной активностью; термостабилен. Инактивируется под действием денатурирующих и восстанавливающих агентов, ионов Cu2+ и Fe2+. Образуется в двух формах: первая – ферментативно активный белок с молекулярной массой 49 000 Д; вторая – неактивный белок-предшественник с молекулярной массой 53 000 Д. Этот экзоэнзим в очищенном виде нетоксичен для животных. In vivo вызывает глубокие патологические процессы в легких.

3. Цитотоксин оказывает выраженное цитотоксическое действие на полиморфно-ядерные нейтрофилы; способствует развитию нейтропении. Вызывает ультраструктурные изменения в клетках, нарушение физиологических градиентов K+, Na+, Ca2+ и глюкозы через повышение проницаемости клеточных мембран; последнее обусловливает набухание клеток и потерю ими крупных (например, белковые) молекул.

4. Гемолизины. Бактерия образует две гемолитические субстанции – термолабильный гемолизин с лецитиназной активностью (фосфолипаза С) и термостабильный гемолизин (фосфолипаза). И первый, и второй гемолизины вызывают солюбилизацию и гидролиз фосфолипидов с образованием фосфорилхолинов. In vivo гемолизины приводят к развитию некротических поражений, особенно в печени и легких.

Среди эндотоксинов, образуемых синегнойной палочкой, выделяют:

1. Энтеротоксический фактор. Несмотря на то, что он не выделен в чистом виде, в настоящее время подтверждены его белковая природа, термолабильность и чувствительность к действию трипсина.

2. Фактор проницаемости, также лабильный к нагреванию и действию трипсина. Подтверждена его роль в развитии патологических процессов в тканях.

3. Нейраминидаза. Она нарушает процессы метаболизма веществ, содержащих нейраминовые кислоты, например в соединительнотканных элементах. Этот фермент способен в 2–3 раза усиливать действие других токсинов синегнойной палочки[4].

Несмотря на наличие большого набора факторов вирулентности, синегнойную палочку все же следует рассматривать как оппортунистический патоген, так как синегнойная инфекция редко наблюдается у иммунокомпетентных лиц с неповрежденными анатомическими барьерами. Большинство штаммов P. aeruginosa обладает поверхностными микроворсинками, обеспечивающими адгезию к эпителию. Взаимодействие с клетками реализируется через рецепторы, включающие N-ацетилнейраминовые кислоты; определенную роль играет и вырабатываемая бактериями слизь. Прикрепление к субстратам стимулирует дефицит фибронектина, наблюдаемый при многих заболеваниях, особенно при муковисцидозе и других хронических заболеваниях легких.

Псевдомонады – типичные внеклеточные микроорганизмы, и их размножение напрямую обусловлено способностью противостоять действию факторов колонизационной резистентности макроорганизма. В частности, слизь и секретируемые цитотоксины затрудняют элиминацию бактерий фагоцитами и иммунокомпетентными клетками, что особенно выражено у пациентов с иммунодефицитами.


Патологические состояния, предрасполагающие к развитию синегнойной инфекции[5]

Состояния Проявления синегнойной инфекции
Частые внутривенные вливания Эндокардит, остеомиелит
Лейкозы Сепсис, периректальный абсцесс
Болезни злокачественного роста Пневмония, сепсис, менингит, диарея
Муковисцидоз Пневмония
Ожоги Целлюлит, сепсис
Операции на органах ЦНС Менингит
Трахеостомия Пневмония
Язвы роговицы Панофтальмит
Катетеризация сосудов Гнойный тромбофлебит
Катетеризация мочевых путей Инфекции мочеполовой системы
Период новорожденности Диарея, менингит

В марте-мае 1998 г. в Канаде была зафиксирована вспышка «синдрома горячей стопы», возможно вызванного P.aeruginosa, у 40 детей в возрасте от 2 до 15 лет, пользовавшихся одним бассейном. Данный синдром характеризовался эритематозной сыпью с узловатыми элементами на подошвенной поверхности стопы, отеком, чувством жжения и интенсивным болевым синдромом. Данная симптоматика развивалась в среднем через 40 часов после купания в бассейне.

При физикальном обследовании были обнаружены красно-пурпурные узлы диаметром 1–2 см, не сопровождавшиеся регионарной лимфоаденопатией. Через несколько дней на стопах появилось шелушение.

У одного ребенка из пустулы на стопе была выделена Pseudomonas aeruginosa. Такой же штамм Pseudomonas aeruginosa в высокой концентрации был выделен из воды бассейна. Биопсия кожи у этого пациента выявила нейтрофильную инфильтрацию вокруг сосудов и потовых желез. При биопсии, взятой у другого пациента, были обнаружены микроабсцессы в дерме.

Результаты двух исследований, опубликованные в медицинском журнале – The New England Journal of Medicine, показывают, что проведение бронхоскопических обследований и манипуляций может быть причиной возникновения вспышек нозокомиального инфицирования пациентов Pseudomonas aeruginosa.

В ходе эпидемиологического расследования были обнаружены конструктивные и производственные дефекты эндоскопического оборудования, в частности нарушение герметичности заглушки биопсийного порта. Вследствие этого микроорганизмы проникали внутрь прибора, и, кроме того, резко снижалась эффективность дезинфекции бронхоскопического оборудования (P.aeruginosa сохраняла жизнеспособность после трех циклов стандартной обработки ортофтальальдегидом).

В обоих исследованиях были проанализированы данные медицинских карт пациентов, результаты микробиологического исследования клинического материала, полученного у пациентов, и образцов, взятых с бронхоскопического оборудования для выявления случаев инфекций, возникших в течение 2–4 недель после процедуры. В одном исследовании было выполнено типирование изолятов P.aeruginosa методом электрофореза в пульсирующем геле (PFGE) для сравнения характеристик штаммов, выделенных у пациентов и обнаруженных на бронхоскопическом оборудовании.

В данных исследованиях были проанализированы данные двух клиник о 60 и 414 пациентах, у которых было выполнено 66 и 665 бронхоскопий, соответственно.

По данным D.L. Kirschke и соавторов у пациентов из первой клиники было проведено 43 микробиологических исследования клинического материала, P.aeruginosa была обнаружена в 20 (47%) образцах, 6 из которых содержали также и S.marcescens.

Во второй клинике – больнице Джона Хопкинса в Балтиморе (США), было отмечено увеличение частоты нозокомиальных инфекций, вызванных P.aeruginosa, в три раза по сравнению с базовыми показателями (с 10,4% до 31,0%). У 97 пациентов (23%) в образцах клинического материала обнаружена синегнойная палочка. Путем типирования изолятов с помощью PFGE было установлено, что штаммы, выделенные от пациентов, идентичны полученным с поверхностей бронхоскопов, в том числе из биопсийного порта.

Было отмечено, что контаминация P.aeruginosa отмечалась при использовании определенных моделей бронхоскопов новых модификаций (BFIT160, BF160, BFP40, Olympus America). В то же время показатели обсемененности эндоскопов других моделей, в том числе аппаратов для обследования желудочно-кишечного тракта, оказались в допустимых пределах. Кроме того, было установлено, что при прекращении использования аппаратов перечисленных новых модификаций частота нозокомиальных инфекций, вызванных синегнойной палочкой, возвращалась к исходным показателям.

Несмотря на то, что не было выявлено никаких нарушений в технологии проведения бронхоскопических процедур и последующей дезинфекции оборудования, штаммы Р.aeruginosa постоянно обнаруживались в мазках, взятых с поверхностей биопсийных портов бронхоскопов. Оказалось, что полученные клиниками новые модели бронхоскопов отличались нарушением герметичности заглушки биопсийного порта. Вследствие этого микроорганизмы проникали внутрь прибора, а затем не подвергались эрадикации при обработке прибора, так как воздушные пробки в полости порта препятствовали адекватному контакту дезинфектанта с поверхностью и высушиванию этой полости аппарата на завершающем этапе обработки.