Смекни!
smekni.com

Современный подход к классификации режимов искусственной вентиляции легких (стр. 3 из 12)

Через 10 лет последовала вторая генерация вентиляторов объемного типа (Puritan-Bennet MA-1, Ohio 560, BournsBear 1, Siemens 900B). Эти вентиляторы стали «рабочими лошадками» в растущем количестве отделений интенсивной терапии в Соединенных Штатах. Параллельно, среди врачей интенсивной терапии возрастала потребность в квалифицированных специалистах в области управления вентиляторами.

Также развивались режимы дыхания и методы контроля функции вентилятора. Раннее оборудование управлялось пневматическими ил7и основными механическими переключателями. Управление функциями модернизировалось с появлением жидкокристаллических и транзисторных технологий в 1970-х. В настоящее время нами используется техника третьего поколения, основанная на микропроцессорах,.

Разнообразие дыхательных режимов расширилось. Классификация 1960-х (Mushin W. W) была обновлена R. Chatburn, чтобы лучше различать увеличивающуюся сложность технологий вентиляторов [СhatburnR. L., 1991]. Однако, это не устранило противоречий в терминологии режимов между производителями и клиницистами.

Концепция перемежающейся принудительной вентиляции (IMV) первоначально была разработана Engstrom в середине 1950-х. Однако, в 1971 г. доктор Robert Kirby и соратники повторно ввели этот режим как первичный для вентиляции у младенцев с респираторным дистресс-синдромом, развивавшимся вторично у преждевременно рожденных. Доктор John Downs с коллегами применили этот режим у взрослых для облегчения отлучения от вентилятора. Клиницисты начали признавать этот режим. В середине 1980-х получил развитие режим вентиляции с поддержкой давлением (PSV). Доктор JohnMarini с коллегами начал исследование пациентов, находившихся на ИВЛ.

Другие первичные режимы вентиляции у взрослых были введены в 1980-х – 1990-х гг. Вентиляция с контролем давления (PCV) была рекомендована для снижения эффекта баротравмы дыхательных путей и повреждения альвеол, которые часто случались у пациентов с высоким легочным сопротивлением (ригидными легкими). Другое недавнее введение, чтобы снизить потребность в давлении, это вентиляция со свободным (сбрасываемым) давлением дыхательных путей (APRV).

Вентиляция с инвертированным отношением вдох/выдох (IRV) была предложена E. O. R. Reynolds в 1971 г. как метод улучшенной оксигенации у младенцев с респираторным дистресс-синдромом. Её применение распространилось и на взрослых пациентов с респираторным дистресс-синдромом, как вариант РЕЕР вентиляции с улучшенной оксигенацией и ограниченным давлением. Пропорционально вспомогательная вентиляция (режим PAV) появилась, обещая режим, в котором вентилятор генерирует давление пропорционально усилию пациента. В конце 1989 г., Respironics ввели понятие режима с двумя уровнями положительного давления (BiPAP), разработанный как неинвазивная альтернатива стандартной вентиляции и использующая назальную лицевую маску.

Глава 2. Некоторые технические аспекты механической вентиляции и классификации аппаратов ИВЛ

Вентиляторы развились в высоко сложные, управляемые микропроцессором устройства с широким диапазоном операционных характеристик. К сожалению, наша терминология и концептуальные модели, которые мы используем, для понимания работы вентилятора, не успевают сохранять темп технологического развития.

В 1980-х производительность вентилятора диктовалась механической движущей системой. Появление микропроцессора позволило отдельному вентилятору производить любое количество форм кривых, столь же безграничное как воображение оператора. В этой главе представлена схема классификации аппаратов ИВЛ в соответствии с технологией, принятой ведущими членами сообщества пульмональной медицины [ChatburnR. L., BransonR. D., 1992] и большинством авторов зарубежных изданий по искусственной вентиляции легких.

2.1. Основные концепции

Вентилятор - это система взаимосвязанных элементов, предназначенных для изменения, передачи и направления прикладной энергии предопределенным образом, чтобы исполнить полезную работу (поддержать или заменить мускулатуру пациента при выполнении акта дыхания). Образ любого вентилятора может быть представлен следующим набором составляющих:

• входящая энергия (вид энергии, используемой при работе вентилятора),

• схема контроля (управления) (включая передачу и преобразование энергии),

• производительность (давление, объем и поток).

Этот простой образ может быть расширен, добавлением множества деталей (таблица 2-1).

2.2. Схема контроля (управления)

Чтобы понимать, как механизм может обеспечивать прирост естественной функции дыхания, необходимо понимание механики дыхания. Изучение механики имеет дело с силами, перемещениями и шкалой изменения этих перемещений. В физиологии, сила измерена как давление (давление = сила x площадь), смещение измерено как объем (объем = площадь х смещение), и степень изменения измерена как поток (например, средний поток = изменение объема/изменение времени; мгновенный поток = производная объема относительно времени). Нас интересует давление, необходимое для движения потока газа через дыхательные пути и увеличения объема легких.

Как пример, сложная система органов дыхания может быть представлена простой графической моделью (соломинка, связанная с воздушным шаром). Простая графическая модель аналогична простой электрической цепи, в которых податливость (комплайнс) является аналогичным емкости, сопротивление потоку аналогично электрическому сопротивлению, и давление аналогично уровню напряжения. Подобие физической и электрической моделей позволяет заимствовать математические модели от электрической разработки, заменяя давление, объем и поток, соответственно, напряжением, нагрузкой и током (рисунок 2-1).

Параметры для классификации аппаратов ИВЛ


Таблица 2-1

Привод (источник энергии) ПневматическийЭлектрическийПеременный токПостоянный ток (батарея) Регуляция потока вдоха и формы кривой потокаВнешний компрессорВнутренний компрессорПоршеньЭлектрический двигатель / вращающееся колесоЭлектрический двигатель / линейный (стойка и шестерня) Пневматическая мембрана (диафрагма) Ограничение переменныхРедуцирующий давление клапанИзмерительная трубка (типа Thorp) Шаговый двигатель с ножничным клапаном (scissors-valve) Пропорциональный соленоид (клапан) ЭлектромагнитныйПрямо соединенный с шаговым двигателемУправляемая шаговым двигателем камераПропорционально разделенные управляемые клапаныСхема контроля (управления) Контроль контура (циркуляции) Механический ПневматическийЖидкостныйЭлектрическийЭлектронныйКонтроль переменных и форм кривыхДавлениеОбъемПотокВремяФазовые переменныеПеременная триггераПеременная предельных значенийПеременная циклаПеременная базовой линии (baseline) Условные переменные Работа вентилятораДавлениеПрямоугольная криваяЭкспоненциальнаяСинусоидальнаяОсциллирующая (колеблющаяся) ОбъемРампообразнаяСинусоидальнаяПотокПрямоугольнаяРампообразнаяВосходящаяНисходящаяСинусоидальнаяЭффекты контура пациентаСистемы тревогТревоги входящей энергии (питания) Низкая электрическая энергияНизкая пневматическая энергияТревоги контроля контураПовреждение основных систем (вентилятор неуправляем) Неправильные настройки вентилятораИнверсионное отношение времени вдох/выдохТревоги выходаДавлениеОбъемПотокВремяВысокая и/или низкая частота дыханий вентилятораВысокое и/или низкое время вдохаВысокое и/или низкое время выдоха (апноэ) Вдыхаемый газВысокая и/или низка температура вдыхаемого газаВысокое и/или низкое содержание О2

Результат выражается как уравнение движения для системы органов дыхания (упрощенная версия) [ChatburnR. L., PrimianoF. P., Jr, 1988]:

Давление мышц + давление вентилятора

= эластичность х объем + сопротивление х поток

(1)

Давление Мышц + давление вентилятора

= эластическое наполнение + упругое наполнение

(2)

В этом упрощенном варианте давление мышц представляется как трансреспираторное давление (то есть, давление дыхательных путей минус давление поверхности тела), произведенное дыхательными мышцами, чтобы расширить грудную клетку и легкие. Можно сказать, что давление мышц является воображаемым (мнимым), потому что его невозможно непосредственно измерить. Давление вентилятора – это трансреспираторное давление, создаваемое им во время вдоха. Сочетание давления мышц и вентилятора создает объем и поток, доставляемые пациенту. Но усилие мускулатуры пациента увеличивает объем легкого за счет уменьшения давления относительно атмосферного, в то время как вентилятор увеличивает объем легкого, увеличивая давление относительно атмосферного давления. Общее давление – результат усилия пациента, вдыхающего газ в легкие и вентилятора, вдувающего газ в легкие. Давление, объем и поток, изменяются со временем и, следовательно, являются переменными. Эластичность и сопротивление приняты к константе, а их совместный эффект составляет наполнение, производимое вентилятором и дыхательными мышцами. Эластичность (комплайнс, податливость торакопульмональной системы) определена как отношение дыхательного объема к давлению в дыхательных путях (мл/см. вод. ст), а сопротивление (упругость, аэродинамическое сопротивление дыхательных путей и искусственных воздуховодов) определено, как отношение дыхательного объема к давлению за единицу времени (мл/см. вод. ст. /сек). Эластичное наполнение - давление, необходимое для преодоления эластичности (комплайнса) системы органов дыхания, упругое наполнение - давление, необходимое для преодоления сопротивления потоку в дыхательных путях (включая интубационную трубку) наряду с легкими и сопротивлением тканей грудной клетки.