Смекни!
smekni.com

Содержание продуктов перекисного окисления липидов в плазме крови беременных женщин (стр. 2 из 6)

Гидроксильный радикал (НО∙). Одноэлектронное восстановление Н2О2 приводит к образованию гидроксильных радикалов, обладающих чрезвычайно высокой реакционной способностью. Разложение Н2О2 в присутствии ионов двухвалентного железа является основным путем образования НО∙ (реакция Фентона) [Владимиров, Арчаков, 2003]:

H2O2 + Fe2+ → Fe3+ + OH- + HO∙

Другой путь образования гидроксильного радикала – это реакция разложения гипохлорита, которая также протекает с участием Fe2+ [Осипов, Якутова, Владимиров 2003; Якутова с соавт., 2004]:

НОCl + Fe2+ → HO + Cl- + Fe3+

Установлено, что образование гидроксильного радикала возможно при разложении гипохлорита также и железонезависимым путем

HOCl +O2- → HO + Cl- + O2-

Вследствие высокой химической активности время жизни ОН-радикалов в клетке составляет около 10-9 с, а расстояние, которое они успевают пройти за это время от места их образования, не превышает 100 нм. Таким образом, клеточная топография повреждающего действия ∙ОН-радикалов и, как следствие этого, характер эффекта повреждения будет зависеть от места их образования. Например, возникновение ОН-радикалов вблизи молекулы ДНК с высокой вероятностью приведет к модификации основания и взрыву одной из цепей ДНК [Kira, Sato, Inoue 2003].

Обладая наиболее высоким в живой природе редокс-потенциалом (Е0=+2.7В), и будучи вследствие этого чрезвычайно агрессивным, ∙ОН оказывает действие практически на любую биологическую молекулу. Но наибольший ущерб клетке наносят его реакции с ДНК, белками и полиненасыщенными жирными кислотами внутриклеточных и плазматических мембран, что определяет сильнейшее мутагенное и цитотоксическое действие гидроксильного радикала [Melov, 2003].

Важно отметить, что в организме нет специальных ферментативных систем, обладающих способностью инактивировать гидроксильный радикал. Низкомолекулярные соединения, такие как урацил, мочевая кислота, салицилаты, глюкоза, диметилсульфоксид, обладают способностью ингибировать ∙ОН-радикал только при достаточно высоких концентрациях [Зенков, Ланкин, Меньщикова, 2004]. Таким образом, при целом ряде патологических состояний, сопровождающихся избыточным образованием АФК и, соответственно, гидроксильного радикала, организм становится практически беззащитным перед повреждающим действием этого соединения. Предотвращение повреждений клеточных структур осуществляется только за счет снижения концентрации радикалов предшественников ОН, в частности, супероксиданион-радикала и пероксида водорода.

Синглетный кислород (1О2). Образуется при изменении спина одного из электронов π-орбитали в молекуле кислорода. Источником синглетного кислорода являются реакции фотосенсибилизированного окисления биологических субстратов [Осипов, Азизова, Владимиров, 2003]. При нефотохимических реакциях образование 1О2 возможно в результате неферментативной дисмутации супероксидных радикалов, протекающей с образованием перекиси водорода в присутствии ионов металлов с переменной валентностью:

О2- + О2- + Н2 → Н2О2 + 1О2

А также при взаимодействии некоторых сильных окислителей, например гипохлорита с Н2О2 и ферментативно – в реакциях восстановления цитохрома с [Maiorino, Zamburlini, Roveri, 2005]. В отличие от молекулы О2, синглетный кислород обладает высокой химической активностью, особенно по отношению к молекулам, содержащим участки повышенной электронной плотности (ненасыщенные жирные кислоты, ароматические аминокислоты, основания). Типичным для 1О2 являются реакции взаимодействия с двойной связью. Это свойство 1О2 особенно важно для инициирования перекисного окисления ненасыщенных липидов в биологических мембранах [Меньщикова с соавт., 2006]. Кроме того, синглетный кислород, как и гидроксильный радикал, вызывает окисления сульфгидрильных групп в белках, декарбоксилирует аминокислоты, расщепляет нуклеиновые кислоты [Eisenberg, Taylor, Guerrero 2002]. Энергичное образование 1О2 в клетке может приводить к её повреждению или даже к гибели [Осипов, Азизова, Владимиров, 2003].

Одним из наиболее эффективных гасителей синглетного кислорода в клетке является β-каротин, одна молекула которого способна потушить около 1000 его молекул прежде, чем он подвергнется окислительной деструкции [Владимиров, Арчаков, 2003].

Гипохлорит (НОСl). Хлорноватистая кислота – сильнейший окислитель, образуется в нейтрофилах при участии гем-содержащего цитоплазматического фермента миелопероксидазы [Klebanoff, 2006]. Миелопероксидаза окисляет ионы солей хлористоводородной кислоты, Сl- в присутствии Н2О2 в ходе реакции:

Н2О2 + Сl- + Н+ → НОСl + Н2О

НОСl не является свободным радикалом, но выступает как один из наиболее сильных окислителей.

НОСl атакует простейшие амины, сульфгидрильные группы в белках и хлорированные пуриновые основания в ДНК [Хавинсон c соавт., 2003]. НОСl может взаимодействовать с замещенными арил-аминами (например, с анилином, 1-нафтиламином и 1-нафтолом) даже при физиологических уровнях, образуя долгоживущие продукты, которые связываются с ДНК и являются генотоксичнымим для клеток человека [Осипов, Азизова, Владимиров, 2003].

1.2. Перекисное окисление липидов.

Все активные формы кислорода обладают высокой цитотоксичностью в отношении любых типов клеток и клеточных образований, что определяется их химической активностью. Можно выделить 4 наиболее вероятные мишени окислительной цитотоксической атаки АФК: индукция процессов ПОЛ в биологических мембранах, повреждение мембраносвязанных белков, инактивация ферментов и повреждение ДНК клеток.

Одним из важнейших следствий избыточного образования АФК является избыточная в этих условиях активация процессов ПОЛ [Барабой, 1991]. В нормальных условиях активность этих процессов находится на невысоком уровне, обеспечивающим протекание ряда физиологических процессов. Чрезмерная, патологически усиленная активация процессов ПОЛ под действием АФК приводит к необратимому изменению или повреждению мембранных структур, нарушению их проницаемости для ионов. Процессы ПОЛ можно условно подразделить на 3 последовательных этапа, или фазы развития: процесс зарождения цепей, процессы развития цепных реакций и обрыв цепей [Зенков, Ланкин, Меньщикова, 2004].

В биологических мембранах окислению подвергаются преимущественно полиненасыщенные жирные кислоты, входящие в состав фосфолипидов [Dix, Aikens, 2005]. На стадии инициирования под действием свободных радикалов О2, ионизирующей радиации, ультрафиолетового облучения и ряда химических веществ, относящихся к прооксидантам, происходит отрыв атома водорода в альфа-положении по отношению к двойной связи. Присутствие двойной связи в жирной кислоте (ЖК) ослабляет связь С-Н в смежных углеродных атомах и тем самым облегчает отщепление Н∙. Чем длиннее ненасыщенная боковая цепь кислоты жирного ряда, тем сильнее у неё склонность подвергнуться липидному окислению [Хавинсон, Баринов, Арутюнян, 2003]. Радикал с углеродом в центре претерпевает молекулярную перегруппировку с образование диена, содержащего сопряженные двойные связи, который в дальнейшем соединяется с О2 и образует радикал пероксида, способный отделить атом водорода от другой ЖК. Возникновение в результате этой реакции органических перекисей и нового радикала способствует продолжению окислительных реакций, приобретающих цепной характер [Зенков, Ланкин, Меньщикова, 2004].

Таким образом, перекисное окисление липидов представляет собой процесс, связанный с активацией кислорода, особенность которого заключается в том, что молекула О2 присоединяется к свободному радикалу [Meral, Tuncel, Surmen-Gur, 2000]:

О2 + L∙ → LO2

В результате получается новый пероксильный радикал органического соединения. В дальнейшем происходит взаимодействие этого радикала с новой молекулой органического соединения, в результате чего протекает процесс цепного ПОЛ.

LO2∙ + LH → LOOH + L

L∙ + O2 → LO2∙

Реакции перекисного окисления липидов указаны на рис. 1.

Рис.1. Реакции перекисного окисления липидов [Владимиров, 1998]

Считается, что образование перекисей липидов осуществляется двумя путями: неферментативным – аскорбатзависимым (аскорбиновая кислота регенерирует ионы за счет обратного восстановления Fe3+ до Fe2+), активируемым металлами с переменной валентностью, и ферментативным (НАДФН-зависимым). По первому пути образование перекисей липидов происходит во всех мембранных структурах, а по второму – преимущественно в эндоплазматическом ретикуломе [Gutteridge, 2005].

Ферментативное ПОЛ относится только к генерации липидных перекисей в активном центре фермента. Образованные при этом гидроперекиси и эндоперекиси являются стереоспецифическими и имеют важные биологические функции. В частности, это относится к циклооксигеназе и липооксигеназе.

Особенность неферментативного цепного окисления в биологических мембранах заключается в том, что оно практически не происходит в отсутствие металлов с переменной валентностью, в частности ионов двухвалентного железа [Владимиров, Арчаков, 2003]. Резко выраженное прооксидантное действие Fe2+ на ненасыщенные жирные кислоты (НЖК) в биологических мембранах обусловлено разложением продуктов реакции гидроперекисей, в результате которого в системе появляются новые свободные радикалы, инициирующие новые цепи окисления:

Fe2+ + LOOH → Fe3+ + OH + LO

При этом радикал LO вступает в дальнейшие реакции цепного окисления:

LO + LH → LOH + L

L + O2 → LO2

В последние годы появилось много данных, свидетельствующих, что ионы железа активируют процессы перекисного окисления также за счет того, что они участвуют в образовании гидроксильного радикала [Владимиров, 1998].

В ходе ПОЛ субстрат (полиненасыщенные ЖК) продолжают расходоваться, если только в этот процесс не вмешивается глутатионпероксидаза, восстановленный глутатион, витамин Е или другой антиоксидант [Birringer, EyTina, Salvatore, 2003], что ведет к прерыванию цепной реакции. Благодаря наличию в организме антирадикальной защиты, процессы пероксидации ограничиваются [Зенков, Ланкин, Меньщикова, 2004]. Физиологическая роль перекисного окисления заключается в участии в процессах самообновления, самоперестройки биологических мембран, ионного транспорта, регуляции активности мембраносвязанных ферментов и других физиологических реакций [Galeotti, Masotti, Borello, 2003]. При интенсивном воздействии на организм химических или физических факторов процессы ПОЛ многократно усиливаются, образование АФК возрастает, а когда происходит срыв механизмов антирадикальной защиты, развивается окислительный стресс, который может проявляться на клеточном, тканевом и организменном уровнях. При этом усиление перекисного окисления липидов, чрезмерная продукция органических перекисей приводят к развитию патологических процессов [Суханова, 2004; Барабой с соавт., 2004].