Для профилактики острой горной болезни тот, кто планирует осуществить турпоход в горы, должен пройти медосмотр и специальную тренировку.
Человек способен адаптироваться к условиям высокой температуры (пройти акклиматизацию) выполняя физические нагрузки в условиях высокой температуры в течение 1ч и больше на протяжении 5-10 дней. Функция сердечно- сосудистой системы, как правило, изменяется в первые 5-5 дней, деятельность механизмов потоотделения- обычно через 10 дней.
3.3. Оценка тепловых раздражений
Раздражающим условием теплоты является не само по себе тепло того или другого градуса, а происходящее при этом согревание или охлаждение кожной поверхности против ее обычной температуры. Каждое из этих раздражений приводит к различному эффекту в отношении сосудистой реакции кожных покровов, а при более значительной силе возбуждает рефлексы оборонительного характера и в сфере движения. Собственно, выснить действие тепла и холода как раздражителя кожной поверхности еще не представляется возможным. Одни объясняют действие этих раздражений путем поднятия и понижения кожной температуры, другие приписывают здесь существенное влияние отклонению температуры кожных нервных приборов от физиологического температурного нуля . наконец, третьи объясняют его проникновением тепловых лучей через наружные покровы до нервных окончаний.
Разностный порог для действия тепла и холода достигает в общем около 0,2°, причем для тепла он, по-видимому, несколько выше, для холода же несколько ниже, но различия в кожной температуре оказывают на величину этого порога незначительное влияние. Если действие тепла или холода распределяется на большую поверхность тела, то вместе с экстенсивностью действия увеличивается и интенсивность, как можно судить по вызываемой при этом рефлекторной реакции и по личной оценке.
У теплокровных животных и человека (т.н. гомойотермных организмов), в отличие от холоднокровных (или пойкилотермных), постоянная температура тела является обязательным условием существования, одним из кардинальных параметров гомеостаза (или постоянства) внутренней среды организма.
Физиологические механизмы, обеспечивающие тепловой гомеостаз организма (его “ядра”), подразделяются на две функциональные группы: механизмы химической и физической терморегуляции. Химическая терморегуляция представляет собой регуляцию теплопродукции организма. Тепло постоянно вырабатывается в организме в процессе окислительно-восстановительных реакций метаболизма. При этом часть его отдается во внешнюю среду тем больше, чем больше разница температуры тела и среды. Поэтому поддержание устойчивой температуры тела при снижении температуры среды требует соответствующего усиления процессов метаболизма и сопровождающего их теплообразования, что компенсирует теплопотери и приводит к сохранению общего теплового баланса организма и поддержанию постоянства внутренней температуры. Процесс рефлекторного усиления теплопродукции в ответ на снижение температуры окружающей среды и носит название химической терморегуляции. Выделение энергии в виде тепла сопровождает функциональную нагрузку всех органов и тканей и свойственно всем живым организмам. Специфика организма человека состоит в том, что изменение теплопродукции как реакция на меняющуюся температуру представляет у них специальную реакцию организма, не влияющую на уровень функционирования основных физиологических систем.
Специфическое терморегуляторное теплообразование сосредоточено преимущественно в скелетной мускулатуре и связано с особыми формами функционирования мышц, не затрагивающими их прямую моторную деятельность. Повышение теплообразования при охлаждении может происходить и в покоящейся мышце, а также при искусственном выключении сократительной функции действием специфических ядов.
Один из наиболее обычных механизмов специфического терморегуляторного теплообразования в мышцах – так называемый терморегуляционный тонус. Он выражен микросокращениями фибрилл, регистрируемыми в виде повышения электрической активности внешне неподвижной мышцы при ее охлаждении. Терморегуляционный тонус повышает потребление кислорода мышцей подчас более чем на 150 %. При более сильном охлаждении наряду с резким повышением терморегуляционного тонуса включаются видимые сокращения мышц в форме холодовой дрожи. Газообмен при этом возрастает до 300 – 400 % . Характерно, что по доле участия в терморегуляторном теплообразовании мышцы неравноценны.
При длительном воздействии холода сократительный тип термогенеза может быть в той или иной степени замещен (или дополнен) переключением тканевого дыхания в мышце на так называемый свободный (нефосфорилирующий) путь, при котором выпадает фаза образования и последующего расщепления АТФ. Этот механизм не связан с сократительной деятельностью мышц. Общая масса тепла, выделяющегося при свободном дыхании, практически такая же, как и при дрожевом термогенезе, но при этом большая часть тепловой энергии расходуется немедленно, а окислительные процессы не могут быть заторможены недостатком АДФ или неорганического фосфата.
Последнее обстоятельство позволяет беспрепятственно поддерживать высокий уровень теплообразования в течение длительного времени.
Изменения интенсивности обмена веществ вызванные влиянием температуры среды на организм человека, закономерны. В определенном интервале внешних температур теплопродукция, соответствующая обмену покоящегося организма, полностью скомпенсирована его “нормальной” (без активной интенсификации) теплоотдачей. Теплообмен организма со средой сбалансирован. Этот температурный интервал называют термонейтральной зоной. Уровень обмена в этой зоне минимален. Нередко говорят о критической точке, подразумевая конкретное значение температуры, при котором достигается тепловой баланс со средой. Теоретически это верно, но экспериментально установить такую точку практически невозможно из-за постоянных незакономерных колебаний метаболизма и нестабильности теплоизолирующих свойств покровов.
Понижение температуры среды за пределы термонейтральной зоны вызывает рефлекторное повышение уровня .обмена веществ и теплопродукции до уравновешивания теплового баланса организма в новых условиях. В силу этого температура тела остается неизменной.
Повышение температуры среды за пределы термонейтральной зоны также вызывает повышение уровня обмена веществ, что вызвано включением механизмов активизации отдачи тепла, требующих дополнительных затрат энергии на свою работу. Так формируется зона физической терморегуляции , на протяжении которой температура также остается стабильной. По достижении определенного порога механизмы усиления теплоотдачи оказываются неэффективными, начинается перегрев и в конце концов гибель организма.
Еще в 1902 г. Рубнер предложил различать два типа этих механизмов – терморегуляцию "химическую" и "физическую". Первая связана с изменением теплопродукции в тканях (напряжением химических реакций обмена), вторая – характеризуется теплоотдачей и перераспределением тепла. Наряду с кровообращением важная роль в физической терморегуляции принадлежит потоотделению, поэтому особая функция теплоотдачи принадлежит коже – здесь происходит остывание нагретой в мышцах или в "ядре" крови, здесь реализуются механизмы потообразования и потоотделения.
- В "норме" теплопроведением можно пренебречь, т.к. теплопроводность воздуха низка. Теплопроводность воды в 20 раз выше, поэтому теплоотдача проведением играет значительную роль и становится существенным фактором переохлаждения в случае влажной одежды, сырых носков и т.д.
- Более эффективна теплоотдача путем конвекции (т.е. перемещением частиц газа или жидкости, смешивание их нагретых слоев с охлажденными). В воздушной среде даже в условиях покоя на теплоотдачу конвекцией приходится до 30% потерь тепла. Роль конвекции на ветру или при движении человека еще более возрастает.
- Передача тепла излучением от нагретого тела к холодному совершается согласно закону Стефана-Больцмана и пропорциональна разности четвертых степеней температуры кожи (одежды) и поверхности окружающих предметов. Этим путем в условиях "комфорта" раздетый человек отдает до 45% тепловой энергии, но для тепло одетого человека особой роли теплопотери излучением не играют.
- Испарение влаги с кожи и поверхности легких также эффективный путь теплоотдачи (до 25%) в условиях "комфорта". В условиях высокой температуры окружающей среды и интенсивной мышечной деятельности теплоотдача испарением пота играет доминирующую роль – с 1 граммом пота уносится 0,6 ккал энергии. Нетрудно подсчитать общий объем теряемого с потом тепла, если учесть, что в условиях интенсивной мышечной деятельности человек за восьмичасовой рабочий день может отдать до 10 – 12 литров жидкости. На холоде теплопотери с потом у хорошо одетого человека невелики, но и здесь надо учитывать теплоотдачу за счет дыхания. При этом процессе совмещаются сразу два механизма теплоотдачи – конвекция и испарение. Потери тепла и жидкости с дыханием довольно значительны, особенно при интенсивной мышечной деятельности в условиях низкой влажности атмосферного воздуха.