Смекни!
smekni.com

Термохемилюминесцентный иммуноанализ (стр. 1 из 2)

Термохемилюминесцентный иммуноанализ


Введение

Люминесценцией называют излучение света в ходе какого-либо процесса. В зависимости от индуцирующего люминесценцию источника энергии ее можно подразделить на физическую люминесценцию и хемилюминесценцию. Физическая люминесценция включает флуоресценцию и фосфоресценцию. В этом случае люминесценция происходит после поглощения световой энергии. Хемилюминесценцией обычно называют излучение света в результате химической реакции. Харви ввел дополнительное ограничение - "при обычной температуре". Позже Селиджер и Макэлрой. Схема реакций представлена на рис. 1.

Люцигенин испускает сине-зеленый свет в присутствии пероксида водорода в щелочной среде. Как показано на рис. 3, многие производные щавелевой кислоты реагируют с Н202, давая электронно-возбужденное промежуточное соединение, которое далее может вступить в реакцию с присутствующим в реакционной смеси соединением, способным к флуоресценции. В оптимальных условияхэтот процесс является наиболее эффективным из неферментагивных хемилюминесцентных реакций, известных в настоящее время. Эфиры акридиния вступают в высокоэффективные окислительные хемилюминёсцентные реакции с Н202, давая акридон.


В известной степени эта реакция подобна биолюминесцентной системе люциферин-люцифераза у светляков. Вместе с хемилюминесцентным окислением люминола и близких производных тидразида фталевой кислоты перечисленные реакции широко использовались в хемилюминесцентных аналитических методиках. Во всех указанных реакциях образуется промежуточное соединение одного типа, а именно замещенный четырехчленный 1,2-диоксетан. Диссоциация этого ключевого интермедиа-та приводит к электронно-возбужденным карбонильным соединениям. Следовательно, во всех перечисленных хемилюминесцентных реакциях образуется очень лабильный 1,2-диоксетан, способный диссоциировать, давая люминесцирующее соединение.

За период с 1968 г., когда был синтезирован триметил-1,2-диоксетая, получено более 200 различных хемилюминесцентных 1,2-диоксетанов. Однако эти соединения не привлекли внимания специалистов в области иммуноанализа. Сейчас известно по крайней мере 10 различных методов синтеза 1,2-диоксетанов. Заместителями в этих соединениях могут быть алкильные, арильные, спироалкильные, спироарильные, алкоксильные, арилоксильные, алкиламинные, тиоалкильные и тиоарильные группы. Опубликован ряд обзоров, посвященных 1,2-диоксетанам.

В этих обзорах рассмотрены методы синтеза 1,2-диоксетанов, а также свойства этих соединений. 1,2-Диоксетаны термически распадаются на два карбонильных соединения, одно из которых может быть в первом синглетном или триплетном электронно-возбужденном состоянии. Как показано на рис. 5, возбужденное соединение может испускать свет при переходе в основное состояние или непосредственно, или путем переноса энергии к акцепторной люминесцирующей молекуле А.

Прямая хемилюминесценция 1,2-диоксетанов обычно очень слаба по сравнению с хемилюминесценцией таких соединений, как люминол. Это связано с тем, что большинство кетонов, эфиров и альдегидов, являющихся продуктами диссоциации 1,2-диоксетанов, имеют низкую эффективность флуоресценции.

Энергия активации термического распада большинства 1,2-диоксетанов равна 20-26 ккал/моль. Это означает, что все такие соединения разлагаются в течение нескольких минут или самое большое нескольких недель при комнатной температуре. Поэтому такие соединения не могут выполнять роль хемилюминесцентных меток в аналитических методах invitro. В нашей лаборатории в 1972 г. был синтезирован чрезвычайно стабильный 1,2-диоксетан, а именно адамантилиденадамантан-1,2-диоксетан. Это белое кристаллическое соединение может храниться при комнатной температуре в течение нескольких лет без разложения до адамантанона. Вычисленный период полураспада соединения III при 25°С равен 104 лет. Термическое разложение этого соединения протекает по первому порядку, и скорость хемилюминесцентной реакции не зависит от концентрации 1,2-диоксетана. При повышении температуры период полураспада уменьшается экспоненциально. График такой зависимости для соединения III представлен на рис.


Таким образом, форма кривой хемилюминесценции зависит от температуры. При определенной температурной программе и стандартном периоде измерений наблюдается постоянная кривая хемилюминесценции, не зависящая от концентрации. Поскольку эта хемилюминесценция инициируется и контролируется только температурой и не сопровождается никакими бимолекулярными реакциями, мы можем назвать этот процесс термохемилюминесценцией. Как 1,2-диоксетан, так и продукт распада IV являются бесцветными соединениями, поэтому при Высоких концентрациях самогашение не наблюдается.

Не зависящий от концентрации спектр ТХЛ соединения III представлен на рис. 8. Максимум термохемилюминесценции находится при 425 ям. Спектр напоминает спектр флуоресценции адамантанона.


Получение меток и меченых соединений

Мы синтезировали ТХЛ-метки на основе диадамантил-1,2-диоксетана. Примеры таких соединений представлены на рис. 9. Так как эти 1,2-диоксетаны получали фотоокислением адамантилиденадамантанов с экваториальным заместителем в положении 4, то они образуются в виде смеси сын- и антиизомеров 1,2-диоксетанов. Например, малеинимид V - это сын изомер,

а иодацетат VI - омта-изомер. За исключением иодацетата VI, который получен в виде чистого акта-изомера, ТХЛ-метки применяются в виде смеси изомеров 1:1.

Для введения метки обычно используют N-гидроксисукцинимидные эфиры VII и VIII, так как эти соединения легко реагируют со свободными аминогруппами белков. Соединение VIII выгодно отличается от VII, так как оно хорошо кристаллизуется и превосходно растворяется в растворителях, смешивающихся с водой. Все метки бесцветны, не разлагаются в течение года при хранении в отсутствие влаги и при температуре ниже комнатной.

В белки, содержащие свободные аминогруппы, метку вводят по простой одностадийной методике с помощью N-гидроксисукцинимидного эфира VIII. Раствор последнего в 1,4-диоксане добавляют при осторожном перемешивании при комнатной температуре к раствору белка в 0,1 М боратном буферном растворе. С тем же успехом можно использовать и другие органические растворители, смешивающиеся с водой. При синтезе меченых антител конечная концентрация 1,4-диоксана должна быть ниже 5% по объему. В бычий сывороточный альбумин можно ввести более 30 остатков ТХЛ-метки, если проводить реакцию в 33%-ном 1,4-диоксане. При этом конъюгат ТХЛ-БСА сохраняет способность растворяться в воде.

Реакция завершается в течение 1 ч, и продукт реакции очищают диализом против боратного буферного раствора или колоночной хроматографией в боратном буферном растворе на сефа-дексе LH-60. Лиофильно высушенный меченый БСА не изменил удельную активность ТХЛ-метки после хранения при -20°С в течение 2 лет.

Так как ТХЛ-метки не поглощают свет с А>290 нм, то число связанных с белком меток можно рассчитать измерением интенсивности ТХЛ или титрованием аминогрупп. Мы обнаружили, что результаты двух этих методов хорошо совпадают. Так, число свободных аминогрупп в БСА, найденное титрованием по методу Хабиба и измерением удельной активности ТХЛ-метки, показало, что с БСА связано 18 остатков соединения VIII.

Отсюда следует также, что удельная активность метки VIII полностью сохраняется при введении метки в белок. Более того, удельная активность ' не уменьшается и при введении в белок очень большого числа меток. Так, удельная активность конъюгата БСА, меченного 25 остатками соединения VIII, оказалась равной удельной активности 25 эквивалентов соединения VIII. В ходе этих исследований метку вводили в различные белки. Полученные данные позволяют сделать вывод, что ТХЛ-метка сохраняет удельную активность в любых конъюгатах соединения VIII с белками, если только белок не содержит металл или хромофор.

Термохемилюминесценция,с переносом энергии

Как показано на рис. 5, энергия электронов синглетного возбужденного состояния кетона, образующегося при разложении 1,2-диоксетана, может быть перенесена нерадиационным путем к акцепторной люминесцирующей молекуле. Это явление можно использовать для усиления ТХЛ-сигнала 1,2-диоксетановых меток и меченых соединений. Для этой цели в белок вводят ТХЛ-метку и молекулу люминесцирующего акцептора. В качестве последнего предлагался 2 -9,10-дифени-лантрацен, устойчивый при 200 -250°С в атмосфере азота. Характеристики флуоресценции этого соединения и хорошо известного акцептора 9,10-дифенилантраце-га практически идентичны.


Так как эффективность флуоресценции адамантанона и ДФА 1авна 5,2 • 10-з и 1 соответственно, то максимальный теоретически возможный коэффициент усиления равен 190. Эффективность переноса энергии зависит от концентрации. Как показано Ферстером теоретически и позднее подтверждено экспериментально, скорость, а также эффективность ПЭ путем дипольного взаимодействия между донором и акцептором зависит от шестой степени расстояния между обоими хромофорами.