Смекни!
smekni.com

Транспорт газов кровью (стр. 2 из 2)

Таким образом, в норме организм потребляет только 25% кислорода, переносимого гемоглобином. Когда потребность в О2 превосходит возможность его доставки, то коэффициент экстракции становится выше 25%. Наоборот, если доставка О2 превышает потребность, то коэффициент экстракции падает ниже 25%.

Если доставка кислорода снижена умеренно, потребление кислорода не изменяется благодаря увеличению экстракции О2 (насыщение гемоглобина кислородом в смешанной венозной крови снижается). В этом случае VO2 не зависит от доставки.

По мере дальнейшего снижения DO2 достигается критическая точка, в которой VO2 становится прямо пропорциональна DO2. Состояние, при котором потребление кислорода зависит от доставки, характеризуется прогрессирующим лактат-ацидозом, обусловленным клеточной гипоксией. Критический уровень DO2 наблюдается в различных клинических ситуациях.

Например, его значение 300 мл/ (мин*м2) отмечено после операций в условиях искусственного кровообращения и у больных с острой дыхательной недостаточностью.

Напряжение углекислого газа в смешанной венозной крови (PvCO2) в норме составляет примерно 46 мм рт. ст., что является конечным результатом смешивания крови, притекающей из тканей с различными уровнями метаболической активности.

Венозное напряжение углекислого газа в венозной крови меньше в тканях с низкой метаболической активностью (например, в коже) и больше в органах с высокой метаболической активностью (например, в сердце).

Двуокись углерода легко диффундирует. Ее способность к диффузии в 20 раз превышает таковую у кислорода. СО2, по мере образования в процессе клеточного метаболизма, диффундирует в капилляры и транспортируется к легким в трех основных формах: в виде растворенной СО2, в виде аниона бикарбоната и в виде карбаминовых соединений.

СО2 очень хорошо растворяется в плазме. Количество растворенной фракции определяется произведением парциального давления СО2 и коэффициента растворимости (a =0,3 мл/л крови /мм рт. ст). Около 5% общей двуокиси углерода в артериальной крови находится в форме растворенного газа.

Анион бикарбоната является преобладающей формой СО2 (около 90%) в артериальной крови. Бикарбонатный анион является продуктом реакции СО2 с водой с образованием Н2СО3 и ее диссоциации:

СО2 + Н2О «Н2СО3«Н+ + НСО3- (3.25).

Реакция между СО2 и Н2О протекает медленно в плазме и очень быстро в эритроцитах, где присутствует внутриклеточный фермент карбонгидраза. Она облегчает реакцию между СО2 и Н2О с образованием Н2СО3. Вторая фаза уравнения протекает быстро без катализатора.

По мере накопления НСО3 - внутри эритроцита анион диффундирует через клеточную мембрану в плазму. Мембрана эритроцита относительно непроницаема для Н+, как и вообще для катионов, поэтому ионы водорода остаются внутри клетки. Электрическая нейтральность клетки в процессе диффузии СО2 в плазму обеспечивает приток ионов хлора из плазмы в эритроцит, что формирует так называемый хлоридный сдвиг (сдвига Гамбургера).

Часть Н+, остающихся в эритроцитах, забуферируется, соединяясь с гемоглобином. В периферических тканях, где концентрация СО2 высока и значительные количества Н+ накапливаются эритроцитами, связывание Н+ облегчается деоксигенацией гемоглобина.

Восстановленный гемоглобин лучше связывается с протонами, чем оксигенированный. Таким образом, деоксигенация артериальной крови в периферических тканях способствует связыванию Н+ посредством образования восстановленного гемоглобина.

СО2 + Н2О + HbО2HbH+ + HCO3+ О2

Это увеличение связывания СО2 с гемоглобином известно как эффект Холдейна. В легких процесс имеет противоположное направление. Оксигенация гемоглобина усиливает его кислотные свойства, и высвобождение ионов водорода смещает равновесие преимущественно в сторону образования СО2:

О2 + НСО3 - + HbН+ → СО2 + Н2О + HbО2

Наиболее широко для обеспечения достаточного газообмена при ОДН используют ингаляцию О2. С этой целью применяют различные устройства, такие как: носовые канюли, негерметичные маски, маски Вентури и др. Недостаток носовых катетеров и обычных лицевых масок в том, что точное значение FiO2 остается неизвестным.

Для приблизительной оценки концентрации О2 при использовании носового катетера можно пользоваться следующим правилом: при скорости потока 1 л/мин FiO2 составляет 24%; увеличение скорости на 1 л/мин повышает FiO2 на 4%. Скорость потока не должна превышать 5 л/мин. Маска Вентури обеспечивает точные значения FiO2 (обычно 24, 28, 31, 35, 40 или 50%).

Маску Вентури часто используют при гиперкапнии: она позволяет подобрать РaO2 таким образом, чтобы максимально снизить задержку CO2. Маски без возвратного дыхания имеют клапаны, препятствующие смешиванию вдыхаемого и выдыхаемого воздуха. Такие маски позволяют создать FiO2 до 90%.

Литература

1. "Неотложная медицинская помощь", под ред. Дж.Э. Тинтиналли, Рл. Кроума, Э. Руиза, Перевод с английского д-ра мед. наук В.И. Кандрора, д. м. н. М.В. Неверовой, д-ра мед. наук А.В. Сучкова, к. м. н. А.В. Низового, Ю.Л. Амченкова; под ред. д.м.н. В.Т. Ивашкина, д.м.н. П.Г. Брюсова; Москва "Медицина" 2001

2. Интенсивная терапия. Реанимация. Первая помощь: Учебное пособие / Под ред. В.Д. Малышева. - М.: Медицина. - 2000. - 464 с.: ил. - Учеб. лит. для слушателей системы последипломного образования. - ISBN 5-225-04560-Х