Содержание
Введение
1. Принципы регулирования функций по рассогласованию и возмущению
2. Биоэлектрические явления: понятие о поляризации, деполяризации, реполяризации, гиперполяризации. Их ионные механизмы
3. Субординационные взаимоотношения в ЦНС. Спинальный шок. Причины и механизмы его развития
4. Строение и области иннервации парасимпатической нервной системы. Ее влияние на органы и ткани
5. Понятие о стрессе. Роль гормонов гипофиза и надпочечников в его развитии
Заключение
Список литературы
Введение
Физиология – наука, изучающая функции и механизмы деятельности отдельных клеток, органов, систем органов, а также организма в целом.
Являясь ветвью биологии, физиология опирается на данные многих других физиологических наук. Без знания морфологического строения клеток, тканей органов и систем органов изучение их функций не может быть полноценным. Важнейшее значение имеет изучение химии и физики, так как все явления, происходящие в организме, обусловлены материальными процессами и в основе этих явлений лежат законы физико-химических наук.
Функциональные изменения в живых организмах и механизмы их регуляции физиология изучает вместе с такими сопредельными науками, как биохимия и биофизика. Некоторые разделы физиологии тесно соприкасаются с психологией.
Результатами физиологических исследований в сочетании сданными общей биологии, морфологии и других наук объясняют причины перехода простейших форм жизни к более сложным и постепенное развитие функций организма. Тем самым физиология содействует формированию научных представлений об эволюции животного мира, позволяет более четко представить процесс развития, благодаря которому человек занял совершенно особое положение в ряду других представителей живых организмов.
1. Принципы регулирования функций по рассогласованию и возмущению
Регулирование функций осуществляется с использованием двух основных принципов: 1) по рассогласованию (отклонению); 2) по возмущению.
Регулирование по рассогласованию предусматривает наличие механизмов, способных определить разность между задаваемым и фактическим значением регулируемой величины или функции. Эта разность используется для выработки регулирующего воздействия на объект регуляции, которое уменьшает величину отклонения. Примером такого управления является стимуляция образования глюкозы при уменьшении ее содержания в крови. Это уменьшение определяется клетками гипоталамуса, которые стимулируют выработку адренокортикотропного гормона в гипофизе. Последний усиливает образование глюкокортикоидов (кортизола) в надпочечниках. Кортизол стимулирует в печени образование глюкозы из аминокислот (глюконеогенез), что приводит к восстановлению нормального содержания глюкозы в плазме крови.
Регулирование по возмущению предусматривает использование самого возмущения для выработки, компенсирующего воз действия, в результате которого регулируемый показатель возвращается к исходному состоянию. Например, уменьшение парциального давления О2 в атмосферном воздухе при подъеме на высоту является возмущающим воздействием для системы дыхания, обеспечивающей оптимальное для метаболизма содержание кислорода в крови. Увеличение частоты и глубины дыхания, скорости кровотока, количества эритроцитов в крови отражает процессы регуляции по возмущению, направленные на восстановление исходных показателей содержания кислорода.[5, 104c]
2. Биоэлектрические явления: понятие о поляризации, деполяризации, реполяризации, гиперполяризации. Их ионные механизмы
Отличительной особенностью высокоспециализированных тканей является способность реагировать на раздражение сложным комплексом физико-химических реакций, называемых возбуждением. Процесс возбуждения связан с наличием в мембране электрически (для Са2+ и Сl-) и химически (для Nа+ и К+) управляемых каналов, которые могут открываться в ответ на соответствующее раздражение клетки.
Для каждого из переносимых через мембрану вида ионов существуют самостоятельные транспортные системы — ионные каналы (натриевые, калиевые, кальциевые, каналы для хлора и т. д.). Ионный канал состоит из поры, воротного механизма, сенсора (индикатора) напряжения ионов в самой мембране и селективного фильтра.
Пора представляет собой молекулярное динамическое образование, которое может находиться в открытом и закрытом состоянии. Образована пора «транспортным» ферментом — белком с высокой каталитической активностью, который способен переносить ионы через мембрану со скоростью, в 200 раз превышающей скорость простой диффузии.
Воротный механизм (ворота канала) расположен на внутренней стороне мембраны и представлен белковыми молекулами, способными к конформации (изменение пространственной конфигурации молекул). В тысячные доли секунды он открывает (активирует) и закрывает (инактивирует) канал и таким образом регулирует скорость передвижения ионов по нему и поступление их в цитоплазму. Воротный механизм высокочувствителен к различным химическим веществам, в том числе ферментам ядам и некоторым лекарственным средствам. Они специфически влияют на работу ворот, ускоряя или замедляя ее, что особенно важно при направленном транспорте лекарственных средств с использованием естественных ионных каналов.
Сенсор напряжения ионов в мембране представлен белковой молекулой, расположенной в самой мембране и способной реагировать на изменение мембранного потенциала.
Селективный фильтр находится в самом узком месте канала. Он определяет однонаправленное движение ионов через пору и ее избирательную проницаемость.
В развитии возбуждения выделяют 4 этапа: 1) предшествующее возбуждению состояние покоя (статическая поляризация); 2) деполяризацию; 3) реполяризацию и 4) гиперполяризацию.
Статическая поляризация — наличие постоянной разности потенциалов между наружной и внутренней поверхностями клеточной мембраны. В состоянии покоя поверхность клетки всегда электроположительна по отношению к цитоплазме, т. е. поляризована. Эта разность потенциалов, равная ~60 мВ, называется потенциалом покоя, или мембранным потенциалом (МП). К факторам, обусловливающим его существование, относятся: а) наличие К+ — Nа+ трансмембранных градиентов концентрации и градиентов С1- и Са2+; б) высокая избирательная проницаемость мембраны для К+, связанная с наличием в ней постоянно открытых в состоянии покоя калиевых каналов. В то же время проницаемость мембраны для Na+ в состоянии покоя незначительна. В связи с этим постоянный поток К+ из цитоплазмы создает относительный дефицит положительных зарядов на внутренней поверхности и избыток их на наружной поверхности клетки. Токи, регистрируемые в состоянии статической поляризации, называются токами покоя, или калиевыми токами; в) работа Na+-К+-АТФазных насосов, поддерживающих постоянные ионные градиенты концентрации.
Деполяризация — сдвиг МП в сторону его уменьшения. При изменении проницаемости клеточной мембраны под действием раздражения открываются «быстрые» натриевые каналы, вследствие чего Ыа+ лавинообразно поступает в клетку. Одновременно в ряде случаев активируются и «медленные» каналы для Са2+. Переход положительно заряженных ионов в клетку вызывает уменьшение положительного заряда на ее наружной поверхности и увеличение его в цитоплазме. В результате этого сокращается трансмембранная разность потенциалов, значение МП падает до 0, а затем по мере дальнейшего поступления Na+ в клетку происходят перезарядка мембраны и инверсия ее заряда (поверхность становится электроотрицательной по отношению к цитоплазме) — возникает потенциал действия (ПД). Электрографическим проявлением деполяризации является спайк, или пиковый потенциал.
Необходимо отметить, что деполяризация может быть как вызванной (при наличии внешнего стимула), так и спонтанной, обусловленной способностью некоторых видов клеток самовозбуждаться. Причиной такого самовозбуждения являются метаболические обменные процессы в самих клетках.
Величина, или степень, деполяризации и ее скорость зависят, помимо свойств самой возбудимой ткани, от частоты и силы раздражения. Для количественной характеристики степени деполяризации пользуются понятием «порог раздражения» — это минимальная сила, способная вызвать специфическую реакцию возбудимой ткани. При действии слабых, подпороговых, раздражителей деполяризации не возникает или она слабо выражена (неполная, локальная, или частичная, деполяризация). В результате действия пороговых и надпороговых раздражителей развивается полная деполяризация с возникновением ПД.
В норме деполяризация длится недолго, так как в самой мембране имеются механизмы, ограничивающие этот процесс. Во время деполяризации, когда переносимый ионами Nа+ положительный заряд достигает некоторого порогового значения, в сенсоре напряжения ионных каналов возникает ток смещения, который «захлопывает» ворота и «запирает» (инактивирует) канал, прекращая тем самым дальнейшее поступление Nа+ в цитоплазму. Канал «закрыт» (инактивирован) вплоть до восстановления исходного уровня МП.
Реполяризация — восстановление исходного уровня МП. Главными факторами, вызывающими реполяризацию мембраны и способствующими восстановлению исходных Na+ — К+-градиентов концентрации, являются процессы активного ионного транспорта. Электрографическим проявлением реполяризации является отрицательный следовой потенциал.
Гиперполяризация — увеличение уровня МП. Вслед за восстановлением исходного значения МП (реполяризация) происходит его кратковременное увеличение по сравнению с уровнем покоя, обусловленное повышением проницаемости калиевых каналов и каналов для СЬ. В связи с этим поверхность мембраны приобретает избыточный по сравнению с нормой положительный заряд, а уровень МП становится несколько выше исходного. Электрографическим проявлением гиперполяризации является положительный следовой потенциал. На этом заканчивается одиночный цикл возбуждения.[2, 15c]