Смекни!
smekni.com

Физиотерапевтическое устройство на основе применения упругих волн (стр. 5 из 15)

r2=2.2×10-4×7.1×626/0.252=15.6 Ом,

тогда потери в меди Pм равны:

Pм=I12×r1+I22×r2,(3.14)

Pм=0.0322×3660.3+0.452×15.6=3.04 Вт

Охлаждающую поверхность броневого магнитопровода найдем по формуле:

Sc»2[ac+(a+c)(2a+2b+h)],(3.15)

Sc»2×[1×1+(1+1)(2×1+2×1+2.5)]=28 см2

Для оценки превышения температуры трансформатора определяют удельные охлаждающие поверхности стали sc и меди sм. Если полученные значения sc и sм не менее 20 см2, то превышение температуры можно считать допустимым (40-60?С).

9. Удельную поверхность охлаждения магнитопровода находим по формуле:

sc=Sc/Pc,(3.16)

sc=28/0.0885=316 см2/Вт >> 20 см2,

т.е. нагрев магнитопровода будет незначительным.

10. Найдим охлаждающую поверхность катушки:

Sм»2[(2a+c)(2b+h)+2b(4b+3h)],(3.17)

Sм»2[(2×1+1)(2×1+2.5)+2×1(4×1+3×2.5)]=64 см2

Удельная поверхность охлаждения обмотки:

sм=Sм/Pм,(3.18)

sм=64/3.04=21 см2> 20 см2,

т.е. нагрев катушки будет ниже допустимого.

Таким образом, трансформатор будет иметь следующие габаритные размеры: 50x30x30 мм.

3.3 Расчет задающего генератора и таймера

Расчет задающего генератора проводится в следующей последовательности:

1. Находим частоту модуляции счетчика К561ИЕ16:

fo=1/Т,(3.19)

где Т-период качания частоты, сек.

fo=1/3=0,33 Гц

2. Частота задающего генератора определяется по формуле:

fг=fo×2n,(3.20)

где n – разряд счетчика.

fг=0,33×214=5,4 кГц

Эта частота является начальной для работы счетчика.

3. Затем находим сопротивление R1 для верхней рабочей частоты задающего генератора, при R2 равному нулю и зададимся С1 равному 540 пФ:

R1=

(3.21)

R1=100 кОм

4. Определяем из формулы для fгR2 для нижней рабочей частоты задающего генератора:

fг=

(3.22)

R2=4,8 кОм

Расчет электронного таймера проводится по следующей методике:

5. Время работы таймера:

t=R×C(3.23)

Зададимся С4, равное 220 мкФ, при нижней границе срабатывания t=1мин (R6=0).

R5= t/C4= 5,1 кОм

6. Находим R6, при верхней границе срабатывания таймера t=30 мин:

R6=

(3.24)

R6= 100 кОм

3.4 Расчет ГУНа

Расчет ГУНа заключается в определении по специальным номограммам [19], приведенным на рисунке 3.3, частотные характеристики ГУНа: а) зависимость центральной частоты ГУНа f0 от R9 и C8; для частоты сдвига fсдв; зависимость пределов частот от отношения R11/R9.


а)
б)
в)

Рисунок 3.3 – Частотные характеристики ГУНа

Исходными данными являются: R9=R11= 100 кОм, С8=6800 пФ. Определяем по номограммам центральную частоту f0=40 кГц. Выбранную частоту следует сместить (сдвинуть) на величину Dfсдв=22 кГц, если вывод 12 микросхемы CD4046B и нулевой провод соединить через резистор R11.

При соотношении номиналов R11/R9=1 находим по номограмме (рисунок 3.3, в) отношение fmax/ fmin=3,3.

3.5 Расчет усилителя мощности

Порядок расчета усилителя мощности, собранного по двухтактной схеме с параллельным включением транзисторов, следующий [ ]:

1. Выбираем тип транзистора исходя из заданной мощности по условию:

Pkmax³P1(3.25)

25 Вт ³ 15 Вт

Наиболее подходящий, в нашем случае, транзистор КТ815Г.

2. Выбираем напряжение питания из условия:

Е=(0,5¸0,8) Uкдоп,(3.26)

Е= 12 В.

3. Рассчитываем эквивалентное сопротивление нагрузки:

R¢э=

,(3.27)

где rвн – сопротивление пьезоэлектрического преобразователя, равное 4,7 кОм.

R¢э=

=21.4 кОм

4. Определяем амплитуду тока в цепи первичной обмотки трансформатора:

I1=

(3.28)

I1=

5. Рассчитываем мощность, потребляемую каскадом:

P0=

(3.29)

P0=18,3 Вт

6. Подсчитываем постоянную составляющую тока питания:

I0=

(3.30)

I0=1.5

7. Определяем КПД:

h=

(3.31)

h= 0.82

8. По заданной нагрузке рассчитываем входное сопротивление системы:

R¢э=

(3.32)

где Сэл – электрическая емкость преобразователя, равная 5 нФ;

w0 – резонансная частота, равная 251200 рад/сек.

R¢э=13,37 кОм

9. Определяем коэффициент трансформации выходного трансформатора:


n=

(3.33)

n=0.83

Таким образом, были произведены расчеты основных параметров: трансформатора, который будет иметь следующие габаритные размеры 50x30x30 мм и коэффициент трансформации N=0,07; задающего генератора (частоту модуляции счетчика) и таймера; и электрические параметры усилительного выходного каскада. По номограммам были определены центральная частота ГУНа f0=40 кГц и fmax/ fmin=3,3.


4. Выбор функциональных элементов и материалов конструкции

4.1 Выбор функциональных элементов

Проанализировав требования технического задания по электрической принципиальной схеме физиотерапевтического устройства на основе применения упругих волн проведем анализ и выбор элементарной базы.

Так как к разрабатываемому устройству не предъявляется повышенных требований к диапазону рабочих температур и других дестабилизирующих факторов, то можно сделать вывод о применении в приборе дешевых электрорадиоэлементов, имеющих малые габариты и потребляемую мощность.

При разработке электрической принципиальной схемы использовались следующие виды радиоэлементов: микросхемы, транзисторы, диоды, резисторы, конденсаторы, трансформаторы. Электрорадиоэлементы должны быть совместимы по тепловым и энергетическим характеристикам.

Задающий генератор, счетчик, генератор управляемый напряжением и электронный таймер собраны на интегральных микросхемах .

Выбор типа микросхем проведем исходя из следующих соображений:

- соответствие параметров микросхемы электрической принципиальной схеме;

- интегральная микросхема должна иметь минимальный ток потребления;

- низкая себестоимость.

Электрические параметры выбранных микросхем приведены в таблице 4.1.


Таблица 4.1

Электрические параметры микросхем

Серия и тип ИМС Параметры ИМС
Uпит, В Iпот, мкА
1 2 3

К561ИЕ16

К561ЛЕ5

CD4046

КР1006ВИ1

16

14

16

15

2

2

3

2

Интегральная микросхема (стабилизатор напряжения), которую необходимо установить в блоке питания, должна обеспечивать необходимое выходное напряжение. Она должна быть рассчитана на мощность не менее 1 Вт. Микросхема КР142ЕН8А удовлетворяет вышеуказанным условиям. Ее параметры: Pрас=1.5 Вт; Uвых=12±0.27 В [20].

Транзисторы в двухтактном усилителе будем применять средней мощности типа КТ815Г [21]. Они имеют следующие параметры:

- коэффициент усиления h21Э=25-275;

- напряжение UКЭ max=40 В;

- ток коллектора IКmax=1000 мА;

- мощность PКmax=25 Вт.

Они достаточно миниатюрны и дешевы.

Выбор типа диодов проводим исходя из следующих соображений:

- диод должен быть высокочастотным или универсальным;

- должно соблюдаться соответствие электрических параметров диодов схеме электрической принципиальной;

- применение диода по возможности с минимальными типоразмерами.

Исходя из этих требований и величины потребляемой мощности выбираем диодный мост КЦ405Е.

Резисторы будем применять серии С2-23. Элементы этой серии имеют малый размер и недорогие по стоимости. Погрешность их должна быть не больше ±10%. Два переменных резистора возьмем серииСП4-1а. Они отличаются простотой использования и дешевой ценой.

Для коммутации сети в приборе используем переключатель типа ПКн-41-1-2П. Его выбор обусловлен простотой крепления, малыми размерами и такой конструктивной особенностью: включенное и выключенное состояние визуально различимы по высоте кнопки. Кнопки переключения режимов возьмем КМП8-4 НАЗ.604.006.

Так как устройство должно быть достаточно надежным и обеспечивать необходимый диапазон частот, то конденсаторы будем использовать типа КМ. Электролитический конденсатор типа К50-35 должен быть рассчитан на напряжение не менее 16 В. Также будут применены конденсаторы К10-17. Погрешность их должна быть не больше ±20%.

В физиотерапевтическом устройстве на основе применения упругих волн применен повышающий трансформатор. Работает он на частотах до 66000 Гц. В связи с этим в трансформаторе необходимо использовать торроидальный сердечник. Это уменьшит габариты изделия. Для намотки трансформатора необходимо взять провода ПЭВТЛ-1-0.1 и ПЭВТЛ-1-0.2 так как их параметры наиболее подходят для обеспечения необходимых характеристик трансформатора.