Смекни!
smekni.com

Флуоресцентный иммуноанализ с полным внутренним отражением (стр. 1 из 3)

Флуоресцентный иммуноанализ с полным внутренним отражением


ВВЕДЕНИЕ

Иммуноанализ оказывает большое влияние иа медицинские исследования и клиническую практику с момента его появления в начале шестидесятых годов. Антитела использовали как реагенты для разработки высокочувствительных и специфических методов анализа, которые позволяют определять клинически важные вещества в сложных биологических пробах. Позднее выявились по меньшей мере два главных направления в развитии иммунологических методов анализа. Одно направление с чисто научной основой преследовало цель достижения максимальной теоретически возможной чувствительности. Важнейшим результатом этого иаправления можно считать разработку высокочувствительного иммуноанализа для определения в сыворотке тироидстимулирующего гормона, что в свою очередь впервые позволило дифференцировать больных гипертироидизмом, имеющих очень низкий уровень TSH, и здоровых людей. Для достижения этой цели были опробованы различные методы, которые можно подразделить на несколько групп в соответствий с основными принципами анализа; как правило, в них использовались меченые реагенты. При разработке этих анализов применялись

1)высокоэффективные системы разделения для минимизации уровня фоновых сигналов;

2)новые метки с высокой удельной активностью; 3) приборы с широким рабочим диапазоном, например люминометры или флуо-риметры с временным разрешением.

Эти системы успешно применены для определения уровня TSH в сыворотке, что позволило надежно дифференцировать состояния эутироидизма и гипертироидизма.

Второе общее направление в развитии иммуноанализа касается стадии разделения. Здесь основная цель заключается в создании таких систем анализа, в которых нет необходимости в отделении свободного определяемого вещества от связанного с антителами до измерения сигнала. Наборы для нескольких таких так называемых гомогенных, или безразделительных, методов анализа производятся в промышленном маштабе. Они получили широкое распространение благодаря простоте выполнения анализов и возможности применения в клинической практике. Движущей силой этих разработок были не столько научные интересы, сколько стремление сделать иммуноанализ технически' менее сложным и пригодным для изучения одной или нескольких проб. Другой целью разработки этих наборов является обеспечение возможности выполнения иммуноанализов в децентрализованных пунктах, например в поликлиниках, медпунктах и независимых ~ специализированных больницах. Наличие широкого рынка сбыта стимулировало разработку гомогенных методов анализа. Из них наибольшую известность приобрели системы для анализа в растворах, в которых связывание антител с антигенами приводит к появлению сигнала. Примером может служить метод поляризационного флуоресцентного иммуноанализа, впервые предложенный Дандли-кером и др., и соответствующий набор реагентов, выпускаемый в промышленном масштабе фирмой AbbottLaboratories под торговым названием TDx™. Другим примером является методика им-муноферментного анализа типа EMIT™, созданная фирмой SyvaCorporation и основанная на пространственном ингибировании фермента, индуцированном связыванием антителами меченного ферментом антигена.

В других жидкофазных методах используются липосомы, содержащие генератор сигнала. Эти вещества высвобождаются при разрушении оболочки липосом под действием специфического ли-зирующего агента, связанного с антигеном. Лизирующий агент становится относительно неактивным, когда меченый антиген связывается с антителами. Соответствующая аналитическая система разрабатывается фирмой DuPontCorporation. Другой подход предложен фирмой MicrogenicsCorporation, в нем для получения двух неактивных фрагментов уЗ-галактозидазы из E.coliиспользуется технология генной инженерии. Активность фермента восстанавливается при соединении этих фрагментов в растворе. Если один из этих фрагментов связывается с антигеном, то соответствующие антитела будут ингибировать реакцию рекомбинации фрагментов фермента. На основе этого подхода, получившего название CEDIA™, в настоящее время выпускается набор для определения дигоксина в плазме. В целом же все эти жидкофазные гомогенные методы иммуноанализа применяются только для определения гап-тенов, например лекарств или стероидов, что связано в основном с физико-химической природой таких методов анализа. Анализы на основе пространственных эффектов становятся все менее и менее эффективными по мере увеличения размера молекул определяемого вещества. Аналогично в иммуноанализе с поляризацией флуоресценции разность интенсивностей сигналов связанного и свободного антигена, меченного флуорофором, быстро уменьшается с увеличением размера антигена и становится слишком малой, если молекулярная масса антигена достигает 10000 - 20000.

Альтернативный путь для разработки гомогенных методов иммуноанализа был предложен нами и другими исследовательскими группами. Этот подход, который мы первоначально назвали "иммуноанализом на непрерывной поверхности", основан на контроле протекания реакции антиген-антитело после и во время связывания с непрерывной поверхностью, которая является частью системы обнаружения сигнала. Принцип действия этих иммуносенсоров включает иммобилизацию одного из иммунореагейтов на поверхности сенсора, которая изготовлена таким образом, что она приобрела чувствительность к некоторым компонентам или продуктам реакции. Для обнаружения иммунологических реакций на непрерывной поверхности использовались как электрохимические, так и оптические методы.


ОПТИЧЕСКИЕ МЕТОДЫ ИЗУЧЕНИЯ РЕАКЦИЙ НА ПОВЕРХНОСТЯХ

Применению так называемого поверхностного иммуноанализа, т.е. оптических методов для изучения иммунохимических реакций, протекающих на поверхностях, посвящено несколько обзоров.

Показатель преломления Уменьшение интенсивности света Интенсивность флуоресценции
Внутреннее отражение Рассеяние [11] Нарушенное полноеотражение (НПО) [17]Поверхностный Плазменный резонанс (ППР) [12] Полное внутреннее отражение с флуоресценцией (ПВОФ) [18]
Внешнее отражение Эллипсрметрия [13] ППР [14] Рассеяние [15] Интерференция [16]

Эти методы можно подразделить на две категории в зависимости от типа используемой оптической системы, измеряющей внешнее или внутреннее отражение. Подобная классификация, учитывающая тип иммуноанализа, представлена в табл. 1. В общем случае один из иммунореагентов иммобилизуют на непрерывной поверхности подходящей твердой подложки, которая имеет определенные оптические свойства. Затем контролируют протекание иммунологической реакции связывания с помощью одного из способов, основанных на 1) изменении показателя преломления или толщины слоя, 2) ослаблении света из-за появления на поверхности специфических поглощающих групп, 3) увеличении интенсивности флуоресценции благодаря связыванию с поверхностью специфических флуорофоров, 4) тушении флуоресценции на поверхности.

В этой главе основное внимание будет уделено описанию систем с внутренним отражением. Мы рассмотрим теорию и практические рекомендации по генерации распространяющихся волн, метод полного внутреннего отражения флуоресценции, а также подходы, направленные на практическое использование таких систем, и, наконец, вероятные направления будущих исследований в этой области.

РАСПРОСТРАНЯЮЩИЕСЯ ВОЛНЫ

Спектроскопия внутреннего отражения - это метод, который можно использовать для контроля реакций на поверхностях, точнее в приповерхностном слое толщиной порядка длины световой волны и расположенном на границе раздела двух сред с различными показателями преломления. Когда луч света, выходящий из среды с большим показателем преломления, претерпевает полное внутреннее отражение в оптически более плотной среде, то в оптически менее плотной среде вблизи отражающей поверхности возникает электромагнитная волна, которая называется нераспространяющейся.

Нераспространяющаяся волна составляет часть светового потока, претерпевшего внутреннее отражение; она проникает на долю длины световой волны в среду с меньшим показателем преломления. Такая затухающая волна может оптически взаимодействовать с веществами, расположенными на поверхности или вблизи нее. Существенной характеристикой СВО является возможность непрерывного контроля реакций на поверхностях при минимальных помехах со стороны веществ, удаленных от поверхности раздела сред. Такое оптическое взаимодействие можно, изучать несколькими способами, из которых мы уделим основное внимание методу полного внутреннего отражения с флуоресценцией. Как показано на рис. 1А и 1Б, оптически более плотная среда элемента внутреннего отражения может однократно или многократно отражать световую волну. Последний тип ЭВО также называют световодом или волноводом.

Чаще всего используются два оптических способа измерения этих взаимодействий: нарушенное полное отражение и полное внутреннее отражение с флуоресценцией. В НПО регистрируется степень ослабления светового луча, претерпевшего внутреннее отражение. Ослабление обусловлено поглощением энергии нераспространяющейся волны оптически поглощающей пленкой вещества на поверхности волновода. В ПВОФ поглощение фотонов нераспространяющейся волны молекулами вещества на поверхности световода является первой стадией двустадийного процесса, в результате которого снова излучаются фотоны с большей длиной волны, т.е. наблюдается флуоресценция.

В общем случае один иммунореагент связывается с поверхностью волновода, а реакцию с соответствующим комплементарным антигеном контролируют без каких-либо стадий разделения. Необходимость последних отпадает в силу того, что в зону эффекта нераспространяющейся волны попадают только связанные антигены, находящиеся на поверхности волновода.