Смекни!
smekni.com

Эволюция иммунной системы (стр. 3 из 5)

В то же время обнаружены Р2-микроглобу-лин-подобные молекулы у земляных червей, ракообразных и насекомых, что подтверждает возможность существования антигенов — предшественников МНС у беспозвоночных. в2-МЗкспррп-булин позвоночных кодируется геном, не сцепленным с МНС, но ассоциирован с молекулами МНС класса I и принадлежит к суперсемейству иммуноглобулинов. Таким образом, молекулы МНС могут быть потомками одной и той же, содержащей один домен и сходной с р2-иммуног-лобулином молекулы, многочисленные разновидности-производные которой возникли в результате перестроек и дупликаций генов и давления отбора.

Наконец, существует целая группа обнаруженных у беспозвоночных молекул, таких как Thy-1, амальгам, фасциклин II, нейроглиан и гемолин, также принадлежащих к суперсемейству иммуноглобулинов; предполагается, что эти молекулы появились в процессе эволюции для опосредования межклеточных взаимодействий и потенциально могут обеспечивать распознавание иммунной системой «не-своего». Этот уровень эволюции, по-видимому, достигнут у насекомых, обладающих гемолином.

ИММУНИТЕТ У ПОЗВОНОЧНЫХ

По сравнению с огромным разнообразием форм беспозвоночных организация позвоночных по общему плану довольно единообразна и все они принадлежат к одному типу хордовых. Хотя эволюционное древо позвоночных имеет многочисленные уровни и ветви, в том числе бесчелюстных, хрящевых рыб. костных рыб. амфибий, рептилий, птиц и млекопитающих, основные клеточные и молекулярные компоненты врожденного иммунитета у всех современных челюстноро-тых удивительно консервативны. Однако усложнению строения тела соответствует возрастание специализации лимфоидной ткани и функций лимфоцитов, а также увеличение разнообразия классов иммуноглобулинов. Самой сложной по структуре и функциям иммунной системой обладают млекопитающие.

Ф клетки и эволюция МНС

Цитотоксические и хелперные Т-лимфоциты млекопитающих, несущие бв-Ф-клеточные рецепторы, распознают большинство чужеродных антигенов только в том случае, если они презентированы в нужной форме собственными полиморфными молекулами МНС. Поэтому филогенез некоторых Т-кле-точных популяций и эволюцию МНС следует рассмотреть вместе.

Функциональные критерии и/или молекулярные и генетические данные доказывают присутствие МНС у всех челюстноротых позвоночных, от хрящевых рыб и выше.

МНС подробно изучен у пойкипотермных позвоночных Xenopus

Недавно проведенные исследования позволили обнаружить гены МНС у хрящевых рыб, чьи предки дивергировали от линии развития других позвоночных более 400 млн. лет назад. Однако наиболее полно гены и белки МНС изучены среди пойкилотермных у шпорцевой лягушки Xenopuslaevis.

Классические антигены МНС у XenopusБелки класса 1а у Xenopusполиморфны и кодируются примерно 20 аллелями. Они присутствуют на поверхности всех зрелых клеток, но в наибольшей степени — на гемопоэтических клетках. б-Цепи этих белков имеют молекулярную массу 40—44 кДа; они образуют 3 домена и нековалентно связаны с Р2-микроглобулином. Белки МНС класса 1 у Xenopusнеобычны в том отношении, что кодируются одним генным локусом.

Неклассические антигены МНС у XenopusСреди генов класса I у Xenopusпервым было идентифицировано большое семейство мономорфных неклассических МНС-подобных молекул* Гены, кодирующие эти молекулы, и классические МНС-гены расположены в разных хромосомах. Ген класса lb, по-видимому, кодирует молекулу, гомологичную белок-связывающим участкам белков теплового шока 70. Недавно предложена гипотеза, согласно которой пептид-связывающая область молекул МНС класса I сформировалась в процессе эволюции из предсуществовавших БТШ. Неклассические МНС-подобные белки, ассоциированные с эпителием, обнаружены у всех изученных позвоночных; предполагается, что они могут обладать различными функциями, например распознавать БТШ патогенных организмов или инфицированных/угнетенных собственных клеток и затем презентировать эти консервативные пептиды Т-клеткам с рестриктированными ТкР.

Антигены МНС класса II у XenopusМолекулы МНС класса II у Xenopusполиморфны и конститутивно экс-прессированы лишь на некоторых зрелых клетках, в том числе на тимоцитах, В- и Т-лимфоии-тах и различных АПК, таких как клетки, сходные с клетками Лангерганса кожного эпидермиса. Белки класса II состоят из кодируемых генами МНС а- и в-цепей; обе цепи представляют собой трансмембранные гликопротеи-ны с молекулярной массой 30-35 кДа. Гены в-цепей молекул МНС класса II у Xenopusкодируют полипептиды, имеющие почти 50% гомологию с в-цепями МНС класса II млекопитающих. При синтезе белки МНС класса II временно связаны с инвариантной цепью. У Xenopusимеются три локуса в-генов МНС класса II.

Экспрессия МНС у Xenopusна каждой стадии жизненного цикла различна

Интересная особенность экспрессии МНС в онтогенезе у Xenopusзаключается в том, что до стадии метаморфоза классические молекулы МНС класса I не экспрессируются на поверхности каких-либо клеток. Напротив, молекулы класса II появляются уже на ранней стадии развития головастиков на В-клетках и некоторых эпителиальных клетках, непосредственно контактирующих с внешней средой. Это свидетельствует о том, что экспрессия классических молекул класса I не является необходимой для ранних стадий развития или для функционирования иммунной системы на стадии головастиков. Не исключено, однако, что важную роль в иммунитете головастиков играют неклассические белки класса I. На этой стадии онтогенеза основное значение, возможно, имеет клеточный иммунитет, рестриктирован-ный по молекулам МНС класса II. Более широкое представительство молекул МНС класса II у головастиков по сравнению со зрелыми лягушками указывает на то, что на низших ступенях эволюции, в более примитивной иммунной системе, именно эти молекулы, возможно, несли функцию презентации антигенов.

МНС у других позвоночных

Белки МНС классов I и II и полиморфные гены класса II недавно обнаружены у хрящевых рыб. Среди костистых рыб генами МНС класса I и Р2-микроглобулина обладает, как установлено, радужная форель и генами МНС класса II — карп.

Аксолотли, для которых характерны относительно слабые Т-клеточные реакции на аллоан-тигены. обладают а- и в-цепями молекул МНС класса II с ограниченным полиморфизмом. Эти земноводные экспрессируют также кодируемые МНС эритроцитарные антигены, сходные с б-ue-пями класса I и с полиморфными молекулами класса IV. присутствующими на ядерных эритроцитах курицы. Они могут присутствовать также у Xenopus.б-Цепи класса I и гетероди мерные молекулы класса II найдены и у различных пресмыкающихся.

У различных позвоночных фенотипически и функционально идентифицированы Т-клетки

У птиц найдены бв- и гд-ФкС в комплексе с коре-цепторными молекулами CD3, CD4 и CD8. В настоящее время появляются данные о наличии некоторых из этих рецепторов или составляющих их цепей у рыб и амфибий. Например, гены из тимоцитов и спленоцитов мексиканского аксолотля обнаруживают значительную гомологию с генами в-цепей ТкР пгиц и млекопитающих. На поверхности тимоцитов и лимфоидных клеток опухоли тимуса у Xenopusприсутствует белок 55 кДа, сходный по аминокислотной последовательности с д-цепью ТкР. С помощью полученных в настоящее время моноклональных антител анти-Xenopusобнаруживаются маркеры, возможно соответствующие CD5 и CD8. У радужной форели недавно выявлены генные сегменты, кодирующие в-цепи ТкР, однако получить монокло-нальные антитела, специфичные по отношению к Т-клеткам рыб, пока не удалось. У хрящевых рыб найдены четыре различных типа генов Т-клеточных рецепторов. Клеточная и молекулярная основа реакции СКЛ, наблюдающейся у ми-ксин, пока не расшифрована.

Важнейшее значение для иммунных реакций у пойкилотермных животных имеет температура. У сома низкая температура тормозит пролиферацию Т- клеток. Эти эффекты обусловлены низким содержанием некоторых ненасыщенных жирных кислот в Т-клетках рыб и связанной с этим текучестью мембран. Поэтому корм с высоким содержанием соответствующих жирных кислот может способствовать лучшей адаптации рыб к низкой температуре. Олеиновая кислота снимает также наблюдаемую при низких температурах супрессию реакций Т-клеток млекопитающих invitro.

Эволюция В-клеток и иммуноглобулинов

Тяжелые и легкие цепи иммуноглобулинов имеются у различных позвоночных

Обнаруженные у миксин белки, ранее считавшиеся антителами, в настоящее время идентифицированы как белки комплемента СЗ—С5. Пока у круглоротых не удалось выявить молекул, принадлежащих к суперсемейству иммуноглобулинов.

Все челюстноротые позвоночные вырабатывают антитела к широкому кругу антигенов. Однако антитела, вырабатываемые пойкилотермными позвоночными, характеризуются низкой аффинностью и слабой иммунологической памятью по сравнению с антителами у гомойотермных позвоночных. Структура антител эволюционно консервативна; у всех животных эти белки состоят из мультидоменных тяжелых и легких полипептидных иммуноглобулиновых цепей, которые могут экспрессироваться на поверхности