Смекни!
smekni.com

Введение в лучевую диагностику и лучевую терапию (стр. 1 из 2)

Вы приступаете к изучению одного из самых главных разделов медицины – медицинской радиологии. Одним из путей решения этой задачи является все более широкое использование лучевой энергии в диагностике и лечении различных заболеваний. Термин «радиационная медицина» существует несколько десятилетий и означает отрасль медицинской науки, изучающей возможности и последствия использования человеком энергии атома как в медицине, так и в других отраслях народного хозяйства. Такое понимание радиационной медицины до 50-х годов было правомочным и соответствовало истине. Развитие науки, совершенствование техники позволили внедрить в медицинскую практику термографию (1956 г.), компьютерную томографию (1970 г.), ультразвуковую сонографию (1976 г.), магнитно-резонансную томографию (1980 г.). Эти методы визуализации внутренних органов и тканей, о которых будет рассказано несколько позже, позволили производить изучение состояния указанных образований и структур без применения ионизирующих излучений, обладающих известным вам биологическим действием. В связи с изложенным современное понимание радиационной медицины существенно расширилось и современным термином, отражающим этот же раздел современной науки, является «лучевая диагностика и лучевая терапия, изучающая возможности в диагностике и лечении некоторых заболеваний как ионизирующих, так и неионизирующих (инфракрасного, ультразвукового и др.) излучений. Радиационная медицина все шире получает «права гражданства», на базе кафедр рентгенологии и радиологии создаются кафедры радиационной медицины или как они более часто называются – лучевой диагностики и лучевой терапии со соответствующей коррекцией целей и задач этих кафедр.

В силу известной косности бюрократической машины создание единой отрасли медицины, основным методом которой является применение волновых излучений лучистой энергии, встречает всевозможные препоны, но, как известно, время не обманешь. Нет сомнений, что в повышении качества и уровня диагностической работы, сокращении времени диагностических исследований будущее принадлежит лучевой диагностике. При этом хотелось бы особенно подчеркнуть, что мы ни в коем случае не пытаемся принизить роль и значение других методов диагностики: инструментальных, эндоскопических и т.д. Когда у нас появится хоть какой-то опыт клинической работы, вам станет ясным, что искусство диагностики не в противопоставлении к приоритетности какого-то метода исследования, а в умении выбрать наиболее целесообразный, информативный в каждом конкретном случае метод диагностики. И зачастую – это один из способов, относящихся к лучевой диагностике.

Наиболее длинноволновым является излучение, применяемое в магнитно-резонансной томографии. Эта сложная методика предполагает использование дорогостоящей аппаратуры, но должного распространения не получила, хотя диагностическая информативность ее чрезвычайно велика

Одним из наиболее популярных и информативных методов лучевой диагностики являются УЗ-исследования. Учение об ультразвуке является разделом акустики. Вам, уважаемые коллеги, известны параметры, характеризующие ультразвук, и, прежде всего, это частота колебаний св сек. (единицей измерения является Гц). Так вот, для УЗ-диапазона этот показатель составляет свыше 16000 Гц. Следующие два взаимосвязанных показателя, характеризующих ультразвук (как и всякое другое волновое излучение) – это длина волны и скорость распространения. Напоминаю, что между этими показателями существует обратная зависимость. Амплитуда колебаний УЗ волны (при одной и той же частоте) характеризует мощность УЗ энергии.

Характер распространения УЗ через ту или иную среду зависит от УЗ-сопротивления (импеданса). При прохождении через однородную среду ход УЗ-пучка представляет прямую линию. При достижении границы сред м разной плотностью (т.е. УЗ-сопротивлением) часть УЗ отражается, а другая продолжает распространение через эту среду. Чем больше разность УЗ-сопротивления, тем сильнее степень отражения ультразвука. Вторым фактором, влияющим на степень отражения УЗ является угол падения луча на поверхность раздела сред: чем больше угол приближается к прямому, тем сильнее степень отражения. Генерация УЗ осуществляется с помощью пьезоэлектрических преобразователей, а регистрация отраженного сигнала УЗ-излучения и формирование изображения – с помощью цепи преобразователей. Изображение, возникающее на экране, может быть зафиксировано на экране или фотокамерой. Следует отметить, что сонограммы отличаются необычайностью.

Далее термография. Дистанционная термография – этот способ дистанционного излучения, и на этом основании изучить структуру тканей и органов путем регистрации И/К излучения с кожных покровов в зоне обследуемого объекта и в симметричных участках тела. Результатом этого излучения является термограмма, которая представляет собой двухмерную карту распределения температуры на поверхности тела. Термография позволяет эффективно выявлять патологические процессы, сопровождающиеся усиленной теплопродукцией в тканях и органах, усиление локального кровообращения и измененными вазомоторными реакциями сосудов. Область применения в термографии очень большая: онкология, отоларингология, нейрохирургия, офтальмология и др. При этом необходимо указать, что известные преимущества термографии в полной мере реализуются лишь в сочетании с другими методами диагностики.

Физиологические и патофизиологические основы термографии. Организм человека в энергетическом аспекте можно рассматривать как открытую термодинамическую систему, с одной стороны, поглощающую тепло из окружающей среды, с другой – выделяющую его. Поддержание постоянной температуры тела (организма) определяется балансом тепла между его продукцией (теплопродукцией) и отдачей (теплоотдачей) в окружающую среду. В среднем в состоянии покоя человек продуцирует около 100 Вт тепла, при повышении температуры тела на 10С теплопродукция увеличивается на 10%. Часть патологических процессов сопровождается нарушением теплообразования. Например, клетки злокачественных опухолей, в связи с ускоренным метаболизмом, продуцируют больше тепла, чем нормальные клетки. На слайде №6 представлена термограмма нижних конечностей, где отчетливо видно снижение ИК-излучения в правой конечности за счет окклюзии бедренной артерии в дистальной трети ее.

К достоинствам термографии можно отнести следующее:

1)Абсолютная безвредность. Организм больного не подвергается ни облучению, ни повреждению. Возможно многократное (и частое) исследование одного и того же больного.

2)Высокая чувствительность исследования. Минимальный регистрируемый градиент температуры между двумя точками на расстоянии 1 мм составляет 0,10С, что позволяет проводить предварительную топическую диагностику очага.

3)Сравнительно большая скорость исследования: в зависимости от типа термографа требуется от 1/16 до 4 мин на 1 исследование.

4)Возможность выбора последовательности безвредных исследований для детей и беременных.

5)Возможность при обзорной термографии одновременной оценки функционального состояния большого числа различных систем организма.

ПОКАЗАНИЯ к термографическому исследованию:

Общие показания. Патологические состояния в период беременности. Патология детского возраста. Ранняя диагностика поверхностно расположенных доброкачественных и злокачественных опухолей. Дифференциальная диагностика в онкологии, гинекологии и акушерстве. Ожоги и отморожения. Контроль за эффективностью лечения.

Частные показания.Акушерство и гинекология. Диагностика внематочной беременности в поздние сроки. Установление величины плода и срока беременности. Динамические наблюдения за угрожающим выкидышем. Диагностика внутриутробной смерти плода. Определение многоплодной беременности.

Ортопедия и травматология. Остеомиелит. Артрозы и артриты. Асептические некрозы костей, повреждения менисков. Острый сиеовиит.

Урология. Острый пиелонифрит, пиелонифрит беременных, острый паранефрит. Молекаменная болезнь. Опухоли почек и мочевого пузыря. Аденома представтельной железы. Орхрэпидидимит.

Патолоия ССС. Органические заболевания сосудов. Заболевания вен нижних конечностей: мигрирующий тромбангиит, варикозное расширение вен и нижних конечностей, тромбофлебит вен глубоких, приобретенная хроническая венозная недостаточность нижних конечностей. Гипертоническая болезнь. Нейроциркуляторная дистония. Инфаркт миокарда.

Заболевания органов брюшной полости. Холециститы, гепатит, панкреатит, аппендицит, перитонит. Абсцесс и кисты печени, цироз печени. Острая дизентерия.

Дерматология. Коллагенозы: системная красная волчанка, скреродермия. Витилиго Псориаз. Аллергодерматозы.

Эндокринология. Тиретоксикоз, токсическая аденома щитовидной железы, аутоимунный тиреоидит, новообразования щитовидной железы.

Отоларингология. Воспалительные процессы в околоносовых пазухах, сосцевидном отростке, костях носа. Злокачественные новообразования в околоносовых пазухах, гортани.

Стоматология. Опухоли слюнных желез. Гнойно-воспалительные заболевания челюстно-лицевой области. Контроль эффективности пластических операций челюстно-лицевой области.

В заключении нашего знакомства с термографией хотелось бы обратить ваше внимание на некоторые вольности в терминологии в отношении термографии. Вам, наверное, доводилось слышать о тепловидении, теплографии, теплоскопии и т.п. исследованиях. Используемые в медицине термины должны соответствовать ГОСТу 17562–72 «Приборы измерительные для функциональной диагностики. Термины и определения» единственно правильным этого исследования является термография. Прошу Вас запомнить и в дальнейшем применять этот термин. Итак, уважаемые коллеги, вы познакомились с ближайшими перспективами развития лучевой диагностики, роли и месте ее в общем цикле диагностической работы. Но давайте реально смотреть на существующее положение вещей: немногим из нас придется работать в диагностических центрах, оснащенных сбалансированным подбором узких специалистов с соответствующим оборудованием и оснащением. Да и сами диагностические центры – это хоть и реальная, но все же перспектива, а не действительность. В наших условиях наиболее распространенными из перечисленных методов лучевой диагностики и лучевой терапии являются использование радиоактивных и рентгеновских излучений. В настоящем, осеннем семестре мы будем изучать возможности применения в медицине радиоактивных излучений. Что же представляет собой медицинская радиология?