Смекни!
smekni.com

Вплив граміцидину S на агрегацію тромбоцитів і стійкість мембран еритроцитів до гемолізу (стр. 3 из 5)

** - вірогідно відносно попередньої концентрації граміцидину S (р < 0,05)

Суттєвим є питання про роль іонів Са2+ і Мg2+ у взаємодії граміцидину S з тромбоцитами. Іони Са2+ відіграють важливу роль в процесі агрегації тромбоцитів, оскільки вони беруть участь у формуванні центру зв’язування рецепторів до фібриногену з його молекулами [SanerheberR.D. etal, 1980;RinkT.J., 1988]. В той же час немає повного розуміння відносно природи цього кальцію – позаклітинний він, або внутріклітинний, який міститься у кальцієвих депо тромбоцитів [ТomasiakM.etal., 2007]. Щодо іонів Мg2+, то в широкому діапазоні концентрацій вони не впливають на агрегацію, а у

концентраціях вищих, ніж фізіологічні, – пригнічують її. Що ж стосується впливу малих концентрацій, то й тут гадки дослідників неоднозначні [KempfertG., BehrendsS., 2003].

Тому у діапазоні від малих до середніх концентрацій було вивчено вплив іонів Са2+, а після їх зв’язування за допомогою ЕГТА – доданих іонів Мg2+, на ступінь і швидкість АДФ-індукованої агрегації тромбоцитів. Одержані дані наведені у Табл. 2.

Як видно, при низьких концентраціях іонів Са2+ в середовищі агрегація тромбоцитів практично не відбувається, що може вказувати на позаклітинну природу кальцію, що бере участь у процесі агрегації.

Крім того, наведені дані свідчать, що у безкальцієвому середовищі іони Мg2+ можуть заміщати собою іони Са2+ в ролі кофактору процесу агрегації тромбоцитів.

Табл..2.

Вплив іонів Са2+ і Мg2+ на ступінь (∆D) і швидкість (V) агрегації тромбоцитів

Са2+ Мg2+
Концентрація, mM ∆D, o.о. Концентрація, mM V, о.о./хв.
0,10 0,02 ± 0,015 0,1 0,42± 0,046
0,25 0,04 ± 0,021 0,5 0,67± 0,085*, **
0,50 0,09± 0,033 1,0 0,89± 0,107*, **
0,75 0,19± 0,041*, ** 2,0 1,21± 0,131*, **
1,0 0,30± 0,052*, ** 5,0 1,46± 0,142*, **
1,50 0,37 ± 0,056* 10,0 1,62± 0,148*
2,0 0,49± 0,070*, ** 15,0 1,58± 0,139*
3,0 0,51± 0,071* 20,0 1,64± 0,150*
4,0 0,48± 0,068* 25,0 1,64± 0,150*

Примітка:* - вірогідно відносно мінімальної концентрації Са2+ і Мg2+ (р < 0,05)

** - вірогідно відносно попередньної концентрації Са2+ і Мg2+ (р < 0,05)

Для з’ясування ролі іонів Са2+ і Мg2+ у взаємодії граміцидину S з інтактними тромбоцитами було проведено дослідження їх агрегації у ЗТП, з якої за допомогою ЕДТА були вилучені іони обох елементів.

На Рис.2 зображені кінетичні криві світлопропускання ЗТП в цих умовах на початкових стадіях зміни форми і активації тромбоцитів. Згідно з цими кривими, при зниженні концентрації Са2+ і Мg2+ в середовищі зміна форми клітин стає менш складною і при повній відсутності обох іонів вони, не активуючись, лише набрякають.

Цей результат підтверджує те, що граміцидин S у концентрації, коли кількість його молекул, що припадають на один тромбоцит, нижче критичної, діє, як типовий індуктор агрегації.

Дослідження впливу граміцидину S на АДФ-індуковану агрегацію тромбоцитів.

На рис.3 зображені часові залежності світлопропускання ЗТП за послідовною дією АДФ і граміцидину S, зіставлені з фотографіями ЗТП на різних стадіях процесу. Додавання граміцидину S до тромбоцитів після завершення АДФ-індукованої агрегації викликає зменшення світлопропускання зразка. Це зменшення, як видно з фотографій, являє собою розпад агрегатів, що утворилися

Хоча механізм руйнування тромбоцитарних агрегатів остаточно ще не з’ясований, можна, однак, припустити таке.

Молекулиграміцидину S, вбудовуючись у мембрану, порушують ліпід-ліпідні й ліпід-білкові взаємодії й, імовірно, викликають в мембрані пружне напруження. Міцність білкових містків, що з'єднують тромбоцити в агрегаті, є набагато меншою міцності мембрани, позаяк в ній діють великі гідрофобні сили [Овчинников Ю.А.,1987 ].

Тому напруга, викликана вбудовуванням молекул антибіотика у мембрану, може зніматися за рахунок розривів саме білкових (фібриногенових) містків. При розриві цих зв'язків агрегати будуть розпадатися, при цьому кількість центрів, що розсіюють світло, збільшується, що приводить до зменшення світлопропускання зразка

АДФ; 4 – 5 хвилин після додавання граміцидину S. Концентрація граміцидину S – 4,15 мкмоль/л.

Зв'язування граміцидину S з мембраною клітини є динамічним процесом, який складається з кількох стадій і включає електростатичні – за участю іонів Са2+ й гідрофобні взаємодії з різними хімічними групами мембрани тромбоцитів. Природно, що процеси взаємодії антибіотика з мембранами індивідуальних тромбоцитів і тих, які знаходяться у складі агрегатів, повинні відрізнятись і мати свої особливості. Для з’ясування цих особливостей були виміряні ступінь і швидкість дезагрегації тромбоцитів в залежності від концентрації граміцидину S. Отримані дані наведені в Табл..3.

Як і припускалося, і ступінь і швидкість дезагрегації тромбоцитів за дією граміцидину S зростають з підвищенням його концентрації. Більш цікавим є те, що руйнування тромбоцитарних агрегатів відбувається вже при концентрації антибіотика 8,6 Ч 105 молекул у розрахунку на одну клітину. Це на півтора порядки менше молекул граміцидину S, ніж їх кількість, при котрій починають руйнуватися індивідуальні клітини - (14,94 - 18,79) Ч106, Табл..1.

Така суттєва різниця може бути наслідком того, що при утворенні агрегатів на мембрані клітин, що входять до їх складу, з’являються ділянки з більшою спорідненістю до антибіотика і меншою механічною міцністю


Табл..3

Концентраційні залежності ступеня і швидкості дезагрерації тромбоцитів при дії граміцидину S

Показник Концентрація граміцидину S, мкмоль/л
2,07 4,15 8,30 16,60
Кількість молекул граміцидину S/ тромбоцит Ч106 4,81 ± 0,217 9,23± 0,341 19,92± 1,248 39,84± 2,691
Ступінь дезагрегації тромбоцитів після додавання граміцидину S - ∆Т, % 8,4± 2,15 33,3*, **± 3,713 46,7*, **± 4,066 71,7*, **± 5,810
Швидкість дезагрегації тромбоцитів після додавання граміцидину S - ∆Т % / хв 1,9± 0,13 3,4*, **± 0,29 4,8*, **± 0,612 7,3*, **± 0,732

Примітка:* - вірогідно відносно мінімальної концентрації граміцидину S (р < 0,05)

** - вірогідно відносно попередньої концентрації граміцидину S (р < 0,05)

Дослідження впливу граміцидину S на АДФ-індуковану агрегацію тромбоцитів при дії фізичних і хімічних чинників.

В основі взаємодії граміцидину S з мембранами клітин лежать, по суті, хімічні реакції утворення зв’язків між амінокіслотними залишками антибіотика і реакційноспроможними групами ліпідів [Егоров Н.С.,1994]. Не кажучи вже про те, що і хімічні реакції і рухливість ліпідів є температурнозалежними, в області від кімнатної до теиператури тіла мембранні ліпіди зазнають фазових структурних переходів, які змінюють їх реакційні властивості [Оічинников Ю.А.,1987].


Рис. 4. Температурні залежності ступеня (∆D) і швидкості (V) розпаду агрегатів тромбоцитів при дії граміцидину S.

Тому в цій області слід чекати особливостей у характері взаємодії антибіотика з тромбоцитами.

На рис. 4 приведені температурні залежності оптичних параметрів ЗТП, які відображають і ступінь і швидкість руйнування тромбоцитарних агрегатів в області температур структурних переходів ліпілів.

Як видно, крім звичайного зростання величини обох досліджених параметрів з температурою, в области t = 180С – 330С спостерігається різкий скачок підвищення ступеня і швидкості руйнування тромбоцитарних агрегатів під дією граміцидину S. В цій області величини обох параметрів дезагрегації стають максимальними. При подальшому рості температури це підвищення стає повільнішим, що свідчить про більшу стійкість агрегатів до дії антибіотика при температурі тіла.

Виявлені особливості свідчать, що характер зв’язування граміцидину S з клітинними мембранами в значній мірі залежить від їх структурного стану. Для більш глибокого з’ясування цього явища були вивчені температурні залежності ступеня і швидкості дезагрегації тромбоцитів під дією антибіотика після їх г-опромінення і індукції в мембранах ПОЛ. Отримані дані представлені в Табл.4 і Табл.5.

г-опромінення тромбоцитів в областівивчених температур дозою 2,58 Кл/кг Ч 10-4 приводитьдо підвищення, а дозою 6,54 Кл/кг Ч 10-3 – до зниження ступеня і швидкості дезагрегації тромбоцитів, причому величина ціх змін росте с температурою. Ця різниця в дії використаних доз, очевидно, є наслідком того, що малі дози випромінювання частково руйнують біополімери мембран, розпорядковуючи, таким чином, їх структуру і, відповідно, механічну міцність. Під впливом же великих доз біополімери можуть зшиватися між собою, підвищуючи тим самим механічні властивості мембран [ ВеnderittM. etal., 1999 ].

Табл..4.

Вплив г-опромінення на температурну залежність ступеня (ДD) та швидкості (V) дезагрегації тромбоцитів при дії граміцидину S

Показник Умовиексперименту Дозаoпромінення,Кл/кг Ч 10-4 Т0, С
20 25 30
ДD, o.o. Контроль - 0,11 ± 0,031 0,23**± 0,042 0,47**± 0,096
Опромінення 2,58 0,05*± 0,017 0,73*, **± 0,118 15,27*,**± 2,72
64,50 0,08 ± 0,021 0,14 ± 0,038 6,58*,**± 1,83
V, о.о./хв Контроль - 0,011± 0,031 0,023**± 0,042 0,12**± 0,029
Опромінення 2,58 0,007*± 0,002 0,064*, **± 0,019 4,22*, **±1,38
64,50 0,012 ± 0,028 0,012*± 0,031 2,94*, **± 0,75

Примітка:* - вірогідно відносно контролю (р < 0,05)