Смекни!
smekni.com

Вплив імплантації синтетичного макропористого гідрогелю та трансплантації клітин нюхової цибулини на процеси регенерації спинного мозку після його травматичного пошкодження в експерименті (стр. 4 из 6)

Одним із головних чинників регенераційного процесу впродовж перших 7-ми тиж є формування найкоротших ланцюгів альтернативної передачі збудження через довговідросткові пропріоспінальні інтернейрони (F.M. Bareyre та співавт., 2004). Отже, необхідне аутогенне підвищення ШПЗ може досягатися лише шляхом підвищення збудливості інтернейронного апарату спинного мозку, що сприяє виникненню синдрому посттравматичної спастичності.

Вірогідно, що у випадку імплантації гідрогелю описані процеси набувають менш інтенсивного виразу, що виливається у помірне зростання величин МА М-відповіді та ШПЗ, обрахованих для ЗІК, протягом перших 7-ми тижнів спостереження.

Враховуючи первинний протекторний вплив гідрогелю на провідниковий та нейрональний апарат спинного мозку, а також зважаючи на отримані дані щодо проростання дрібних аксональних розгалужень у товщу сполучнотканинних компонентів гелевого імплантату починаючи з 3-го тижня, можна стверджувати, що у випадку імплантації гідрогелю широта функціонуючого мотонейронного апарату нижче місця травми переважає аналогічний показник у тварин групи „контроль”. Це обумовлює більш широке покриття інерваційними впливами кожного із м’язів ЗІК і певним чином обмежує об’єм залучення інтернейронного апарату у формування альтернативних шляхів проведення збудження. Однак, тимчасове налагодження прямої провідності по гомолатеральним волокнам через зону імплантації гідрогелю супроводжується зниженням швидкості передачі збудження (у першу чергу через дрібний діаметр новоутворених волокон у зоні імплантату) і демотивацією процесу становлення альтернативних шляхів проведення. Водночас, формування актів рухової активності ЗІК можливе, на нашу думку, лише за умови надходження усієї необхідної низхідної інформації, частина якої, очевидно, передається саме через вказані регенеруючі волокна. Їх присутність, таким чином, підвищує час, необхідний для формування електричного збудження у мотонейронах передніх рогів спинного мозку нижче місця травми, тобто знижує показники ШПЗ у групі „гідрогель” в порівнянні із групою „контроль” станом на 7-ий тиждень спостереження.

Слід очікувати, що подальша організація тканини імплантату, галузіння та подрібнення нервових волокон у товщі гідрогелю на фоні тривалого прагнення рухової системи до збільшення ефективності передачі збудження та функціонування мотонейронального апарату нижче місця травми призводить до поступового зростання активності пропріоспінальних інтернейронів з метою забезпечення проведення збудження в обхід зони трансплантату, залучення регенеруючих волокон у товщі імплантату до вогнищ підвищеної електричної активності. При цьому, як показали дані електронно-мікроскопічного дослідження, на більш віддалених термінах спостереження навколо новоутворених мієлінізованих нервових волокон формуються щільні колагенові футляри, що, вірогідно, є причиною порушення їхньої трофіки та прискорення дегенерації. В сумі своїй ці процеси, на нашу думку, є головною причиною виключення провідності по сектору волокон, що брали участь у формуванні проростань через товщу гідрогелю, а відтак – зниження функції інервованих за їхньою участю мотонейронів нижче місця травми. Цій стадії відповідає очікуване зниження ШПЗ, що виявляється на 23-му тижні спостереження.

Наступаюча за цим вторинна компенсаторна гіпертрофія РО, котрі залишилися у активно функціонуючому стані, супроводжується достовірним зростанням величини МА М-відповіді, що виявляється на 26-му тижні експерименту. На цей момент, очевидно, припадає закінчення формування додаткової частини альтернативних шляхів проведення та підвищення його швидкості механізмами, описаними вище для апарату інервації ЗІК групи „контроль”, що виливається у достовірний пік ШПЗ на 26-му тижні у групі „гідрогель”. Подальше зниження показників МА М-відповіді та ШПЗ на прикінцевих термінах спостереження, на нашу думку, можна пов’язувати із віковими змінами.

При виборі терміну проведення ТКНЦ послуговувалися отриманими даними щодо динаміки відновних процесів у групах „контроль” та „гідрогель”. При цьому з метою виявлення ефекту ТКНЦ у вигляді ізольованої у часі активації відновлення функції задніх кінцівок, не пов’язаної з жодною з аутогенних реакцій регенераційного типу, були обрані рівноцінні стосовно відсутності динаміки і максимально наближені до моменту моделювання травми терміни: 8 та 13 тиж після імплантації гідрогелю та після моделювання ізольованого ЛПП відповідно.

Водночас, виходячи із даних численних досліджень (А. Ramon-Cueto та співавт., 1998; N. Keyvan-Fouladi та співавт., 2003; M.I. Chuah та співавт., 2004), ми припускали, що специфічний ефект ТКНЦ нижче місця травми проявляється у найбільшій мірі на стадії активного регенераційного росту аксональних волокон, що пов’язано із специфікою функції НОГ. Ця фаза регенераційного процесу в ізольованому у часі вигляді виявляється на 7–8-му тижні у групі „контроль”, тоді як у групі „гідрогель” дебютує раніше – на 5-му тижні спостереження. Отже проведення ТКНЦ у терміни 4 та 7 тиж тваринам груп „гідрогель” та „контроль” відповідно ставить представників порівнюваних вибірок в однакові початкові умови та дає змогу відслідкувати специфіку дії клітин НЦ за наявності гелевого імплантату або без нього.

Було встановлено, що проведення ТКНЦ через 4 тиж після імплантації гідрогелю супроводжується достовірним підвищенням швидкості відновлення функції ЗІК (рис. 5), що виявляється на 10-му тижні загального спостереження і спричиняє статистично недостовірне покращення загальних результатів відновного процесу на 0,68 бала за шкалою ВВВ. При цьому, починаючи з 4-го тижня після ТКНЦ відмічалося тривале достовірне підвищення швидкості відновлення функції ЗІК у вибірці тварин із нижчими показниками функції ЗІК. У вибірці тварин із вищими показниками функції ЗІК ефект ТКНЦ виявлявся у вигляді достовірного піку швидкості зростання ПФ ЗІК на 8-му тижні загального спостереження.

Стосовно ЗКК при проведенні ТКНЦ через 4 тиж після імплантації гідрогелю жодного позитивного функціонального ефекту виявлено не було. Аналогічний результат стосовно функції ЗІК та ЗКК спостерігався і у випадку ТКНЦ, здійсненої через 8 тиж після імплантації гідрогелю.

Проведення ТКНЦ через 7 тиж після моделювання ізольованого ЛПП супроводжується виникненням достовірного піку швидкості відновлення функції ЗІК на 5-му тижні після трансплантації, що спричиняє виникнення стабільного у часі статистично недостовірного покращення результатів відновного лікування на 0,88 бала за шкалою ВВВ. Проведення ТКНЦ через 13 тиж після моделювання ЛПП не супроводжується відчутним позитивним функціональним ефектом.

На основі даних електрофізіологічного дослідження можна стверджувати, що ТКНЦ не впливає на часові особливості динаміки величини МА М-відповіді досліджуваного м’язу ЗІК, однак знижує ступінь прояву реакцій, притаманних різним фазам відновного процесу, причому це зниження носить достовірний характер у випадку ТКНЦ після моделювання ізольованого ЛПП (рис. 3). Стосовно контрлатеральної частини нервово-м’язового апарату (ЗКК) такого роду ефект ТКНЦ в обох варіантах застосування (у випадку ізольованого ЛПП та після імплантації гідрогелю в зону ЛПП) був виражений у меншій мірі.

Позитивний ефект ТКНЦ можна описати за допомогою щонайменше трьох механізмів: дестабілізація стійких патологічних топологій нейрональних сіток нижче місця травми; зниження загальної електричної активності у нейрональних ансамблях нижче місця травми і створення умов для реалізації складних форм функціональної активності моторної системи даних відділів спинного мозку; ремієлінізація та відновний ріст аксональних волокон.

Для окреслення кола складових першого із перерахованих механізмів важливо враховувати, що незрілі нейрогенні клітини, потрапляючи у великій кількості в тканину спинного мозку, формують значне поле рецепції та утилізації молекул факторів росту та адгезії. Враховуючи те, що тривале існування патологічних варіантів нейрональних сіток – патофізіологічного субстрату синдрому посттравматичної спастичності – можливе за умови постійної активної продукції факторів росту та адгезії, механізм „дефакторизації” у даному випадку відіграє, на нашу думку, ключову роль у дестабілізації існуючої патологічної структури нейрональних сіток, що призводить до зниження електричної активності мотонейронів спинного мозку.

Іншим можливим механізмом позитивного ефекту ТКНЦ є вплив нащадків прогеніторів НЦ на баланс медіаторних систем в зоні підвищеної електричної активності спинного мозку. Відомо, що прогенітори НЦ invitro та при трансплантації у тканину головного мозку диференціюються в холін-, ГАМК- та дофамінергічні нейрони (S. Pagano та співавт., 2000; E.A. Parati та співавт., 2003). Згідно з отриманими у даному дослідженні даними, у випадку проведення ТКНЦ в стромі імплантату виявляються острівці недиференційованих клітин, а також клітинні комплекси, серед яких визначаються фенотипові ознаки нейробластів. Це може опосередковано свідчити про нейрональне диференціювання прогеніторів НЦ в ділянках їхнього введення та міграційного розповсюдження.