Смекни!
smekni.com

Величина, що характеризує статистичний ефект. Аналіз результатів медико-біологічних досліджень (стр. 2 из 2)

3. Нормальний розподіл показників і основні статистичні характеристики сукупності

У 1910 р. при вивченні розподілу декількох тисяч Американських солдатів за зростом вперше була знайдена цікава закономірність у розподілі цього показника. Ця особливість полягала в більш-менш симетричному накопиченні варіант у центрі ряду варіювання і поступовому зменшенні їх чисельності в міру віддалення від центру. Як з'ясувалося згодом, така закономірність властива розподілам багатьох показників, у тому числі і тих, що стосуються проявів клінічного ефекту. Це означає, що якщо на нескінченно великій кількості пацієнтів вимірюватиметься деякий показник ефекту, що викликається даним методом лікування, то графічне зображення результатів такого дослідження (вісь абсцис – величина ефекту, вісь ординат – кількість пацієнтів, у яких спостерігався ефект даної величини) часто описуватиметься симетричною кривою вигляду (рис. 2). Зображена на рис. 2 крива носить назву кривої нормального розподілу, або кривої Гаусса—Лапласа. В основному заради зручності обчислень у медицині часто робляться допущення про те, що той або інший клінічний показник був розподілений за нормальним законом.

Проте треба звернути увагу на те, що схожість реальних розподілів різних медичних показників з кривою нормального закону не є доведеною раз і назавжди, оскільки вона лише наближена. Остаточний висновок про конкретний закон розподілу даної сукупності робиться лише на підставі перевірки спеціальних статистичних тестів.

Крива нормального розподілу однозначно характеризується двома величинами: М математичним очікуванням (або арифметичним середнім) і а — середнім квадратичним (або стандартним) відхиленням. Значення цих величин визначають положення кривої в системі координат та її форму. Так, максимум досягається в точці, відповідній середньому значенню М; середнє квадратичне відхилення визначає форму кривої: при великій варіабельності даних, тобто великому значенні а крива буде більш пологою, при малій — крутою. Таким чином, кількісний показник ефекту, розподілений за нормальним законом N (М, а), може бути охарактеризований середнім значенням М і середнім квадратичним відхиленням а (або дисперсією а2).

Значення середнього квадратичного відхилення у кожної представленої кривої більше, ніж у попередньої.

Дане твердження справедливе в припущенні про використання у дослідженні досить великої кількості пацієнтів або, кажучи математичною мовою, при суцільному вивченні генеральної сукупності. Проте в реальних умовах чисельність випробовуваних обмежена і являє вибірку з генеральної сукупності, а отже, точні значення М і а невідомі. Кількість об'єктів у вибірці (кількість пацієнтів у дослідженні) називається об'ємом вибірки і позначається n. При аналізі даних клінічних досліджень зазвичай доводиться мати справу з вибірками обмеженого об'єму. Відомо, що правильно відібрана частина генеральної сукупності досить добре відображає структуру цієї сукупності, але повного збігу вибіркових показників з характеристиками генеральної сукупності, як правило, не буває. Вибіркові характеристики є лише наближеними оцінками генеральних параметрів. Це — випадкові величини, і їх оцінки можуть бути точковими та інтервальними.

Вибіркове середнє X і вибіркове середнє квадратичне (або стандартне) відхилення Sx, є точковими оцінками відповідних параметрів М і а генеральної сукупності, і обчислюються за такими формулами:

де

—i-значення оцінюваної ознаки;

n — об'єм вибірки;

— знак підсумовування за всіма елементами вибірки (i = 1 ..., n).

Dx = Sx2вибіркова дисперсія ознаки.

Величину відхилення вибіркового показника (статистики) від його генерального параметра називають статистичною помилкою. Для вимірювання цієї помилки деякої статистики служать дисперсія або квадратична (стандартна) помилка статистики (не можна плутати відповідно з вибірковими дисперсією і середнім квадратичним відхиленням випадкової змінної, що вивчається). Так, стандартна помилка середнього арифметичного х може бути знайдена за формулою:

За відомими точковими вибірковими характеристиками можна побудувати інтервальну оцінку або довірчий інтервал, в якому з тією або іншою імовірністю знаходиться генеральний параметр. Імовірності, що визнані достатніми для впевненої думки про генеральні параметри на підставі відомих вибіркових показників, називають довірчими. Зазвичай у медико-біологічних дослідженнях прийнятним є значення довірчої імовірності P = 0,95 (95%). При цьому імовірність виходу істинного значення параметра за ці межі не перевищує 1—0,95 = 0,05 (5%). Величину, яка доповнює довірчу вірогідність до одиниці, зазвичай позначають p.

Як відомо з центральної граничної теореми, незалежно від розподілу початкової сукупності, з якої були взяті вибірки, вибіркові середні мають приблизно нормальний розподіл. Таким чином, довірчий інтервал для вибіркового середнього значення знаходиться між X — tа

х і X + tа
х, де
х — стандартна помилка середнього, tакоефіцієнт Стьюдента, величина, залежна від об'єму вибірки n (або відповідного числа ступенів свободи) і вибраного рівня довірчої імовірності, визначається за таблицями розподілу Стьюдента. Величина коефіцієнта tа визначається за таблицею на рівні p, що доповнює довірчу імовірність до 1, тобто у разі 95% довірчого інтервалу на рівні (P - 0,95) = 0,05 з урахуванням симетрії інтервалу.

У разі побудови довірчого інтервалу для вибіркового середнього значення число ступенів свободи при зверненні до таблиці Стьюдента обчислюється як n-1. У разі невідомої і оціненої за вибіркою дисперсії і при малому об'ємі вибірки для побудови довірчого інтервалу потрібно користуватися коефіцієнтом Стьюдента з урахуванням числа ступенів свободи.

При достатньо великому об'ємі вибірки (n > 30) виходить, що істинне середнє значення при рівні імовірності Р= 0,95 знаходиться в межах X ± 2

х .

Як правило, під час аналізу результатів контрольованих клінічних досліджень середні значення обчислюються для порівняння їх з показниками групи контролю, на основі такого порівняння робляться певні висновки, заради яких і проводяться дослідження. Якщо дослідник просто порівнює середні значення, розраховані за малими вибірками, без урахування їх випадкової природи, виникає реальна небезпека помилкових висновків. Необхідно мати на увазі, що різниця середніх арифметичних двох вибірок, кожна з яких має свою помилку, також є випадковою величиною зі своєю стандартною помилкою. Порівняння вибіркових середніх арифметичних, розрахованих на основі обмеженої кількості спостережень, дозволяє оцінити лише довірчі границі, в межах яких при даному рівні значимості знаходиться різниця істинних середніх значень. Такі порівняння методами математичної статистики вимагають перевірки гіпотези про рівність середніх значень вибірок.