Обычно наиболее благоприятным для микроорганизмов является соотношение C/N = 20. Однако для образования антибиотика такое соотношение не всегда оптимально. Поэтому для каждого продуцента необходимо подбирать соответствующее соотношение углерода и азота.
Источниками минерального питания служат фосфор, сера и другие макро- и микроэлементы.
Продуценты антибиотиков по отношению к концентрации фосфора в среде можно разделить на три группы:
- высокочувствительные продуценты, для которых оптимальная концентрация фосфора в среде составляет менее 0,01 % (продуценты нистатина, тетрациклинов, флоримицина, ванкомицина);
- продуценты средней чувствительности, для которых оптимальная концентрация фосфора составляет 0,010–0,015 % (продуценты стрептомицина, эритромицина, циклосерина, неомицина);
- малочувствительные продуценты, для которых оптимальная концентрация фосфора составляет 0,018–0,020 % (продуценты новобиоцина, грамицидина, олеандомицина).
Сера входит в состав некоторых антибиотиков, образуемых грибами (пенициллин, цефалоспорин, глиотоксин и др.), бактериями (бацитрацины, субтилины, низины) и актиномицетами (эхиномицины, группа тиострептона). Обычно источником серы в среде служат сульфаты. Однако при биосинтезе пенициллина лучшим источником серы для продуцента служит тиосульфат натрия.
Кроме того, для биосинтеза антибиотиков необходимы и отдельные микроэлементы. Так, продуцент альбомицина S. subtropicus образует антибиотик при значительной концентрации железа в среде. Железо необходимо для образования хлорамфеникола и других антибиотиков.
Биосинтезу ряда антибиотических веществ (хлорамфеникола, стрептомицина, пенициллина и др.) способствуют ионы цинка.
Стимулирующее влияние на биосинтез гентамицина, курамицина А, фософономицина оказывают ионы кобальта.
Ионы галогенов входят в состав некоторых тетрациклиновых антибиотиков и хлорамфеникола.
Влияние рН среды. Многие бактериальные организмы, синтезирующие антибиотики, лучше развиваются при рН около 7,0, хотя некоторые, например молочнокислые стрептококки, продуцирующие низин, лучше развиваются в среде при рН = 5,5÷6,0.
Большинство актиномицетов хорошо развиваются при начальных значениях рН среды в пределах от 6,7 до 7,8; в большинстве случаев жизнеспособность актиномицетов при рН ниже 4,0–4,5 подавлена.
Температура. Для большинства бактериальных организмов температурный оптимум развития лежит в диапазоне 30–37 °С. Для продуцента грамицидина С оптимальная температура для развития и биосинтеза равна 40 °С.
Актиномицеты, как правило, культивируются при температуре 26–30°С, хотя некоторые виды стрептомицетов могут развиваться как при пониженных (от 0 до 18 °С), так и при повышенных (55–60 °С) температурах.
Для большинства мицелиальных грибов оптимальная температура составляет 25–28 °С.
Аэрация. Большинство изученных продуцентов антибиотиков являются аэробами. Для биосинтеза многих антибиотиков (пенициллин, стрептомицин и др.) максимальное их накопление происходит при степени аэрации, равной единице, при которой через определенный объем среды за 1 мин продувается такой же объем воздуха.
В процессе развития продуцента антибиотика в промышленных условиях потребность организма в кислороде меняется в зависимости от стадии развития, вязкости культуральной жидкости и других факторов. На определенных стадиях могут возникнуть ситуации, связанные с кислородным голоданием продуцента. В этих условиях следует принимать дополнительные меры, например, повышение концентрации окислителя добавлением пероксида водорода.
Наиболее перспективным методом выращивания микроорганизмов - продуцентов антибиотиков признан метод глубинного культивирования с использованием периодических процессов. В условиях глубинной культуры процесс развития организма и синтеза антибиотика проходит в две фазы.
В первой фазе развития культуры или, как ее иногда называют, тропофазе (фаза сбалансированного роста микроорганизма), наблюдается интенсивное накопление биомассы продуцента, связанное с быстрым потреблением основных компонентов среды и с высоким уровнем поглощения кислорода.
Во второй фазе развития, именуемой идиофазой (фаза несбалансированного роста микроорганизма), накопление биомассы замедлено или даже уменьшено. В этот период продукты метаболизма микроорганизма лишь частично используются на построение клеточного материала, они в основном направляются на биосинтез антибиотика. Обычно максимум продукции антибиотика в среде наступает после максимума накопления биомассы. Подробное описание технологического процесса на примере производства пенициллина приведено в следующей главе.
3. Производство пенициллина
Пенициллин был открыт в 1929 г. Александром Флемингом и был выделен в кристаллическом виде 1940 году. Установлено, что пенициллин оказывает антимикробное действие в отношении некоторых грамположительных бактерий (стафиллококков, стрептококков, диплококков и некоторых других) и практически неактивен в отношении грамотрицательных видов и дрожжей.
Способность образовывать пенициллин широко распространена среди многих плесневых грибов, относящихся к родам Penicillium и Aspergillus. Однако это свойство более характерно для группы Penicillium notatum-chrysogenum. Первые выделенные из естественных субстратов штаммы как наиболее активные продуценты пенициллина образовывали не более 20 единиц (12 мкг) антибиотика на 1 мл культуральной жидкости. В результате широкой научной работы по селекции новых активных штаммов продуцентов пенициллина получены различные штаммы Penicilliumchrysogenum, которые, в отличие от исходных штаммов, обладают высокой продуктивностью и используются в промышленности. В настоящее время в промышленных условиях получают культуральные жидкости с содержанием пенициллина более 15000 ед/мл, а отдельные штаммы способны синтезировать антибиотик в количестве до 25 тыс. ед/мл.
Под названием «пенициллин» объединена обширная группа веществ, которые являются N-ацильными производными гетероциклической аминокислоты. Из природных пенициллинов применяются бензилпенициллин и феноксиметилпенициллин.
3.1Технологическая схема производства пенициллина
3.2 Изложение технологического процесса
3.2.1 Подготовка инокулята
Подготовка посевного материала включает следующие стадии:
1) выращивание посевного мицелия 1-й генерации в аппаратах малой емкости (инокуляторах);
2) выращивание посевного мицелия 2-й генерации в аппаратах большой емкости.
Споровая культура, используемая для засева инокулятора, выращивается на пшене в стеклянных флаконах, высушивается и в таком виде хранится при комнатной температуре. Засев производят сухими спорами из 2-3 флаконов.
Основной задачей при культивировании продуцента пенициллина в посевных аппаратах на стадии подготовки инокулята является быстрое получение большой массы мицелия, способного обеспечить при пересеве в ферментер интенсивный рост и высокий выход антибиотика. Для осуществления этой задачи продуцент необходимо выращивать на средах, богатых легкоусвояемыми питательными веществами, в условиях хорошей аэрации, при оптимальной для роста микроорганизма температуре.
В качестве легкоусвояемого углерода выступает глюкоза, сахароза и т.д. В качестве второго источника углерода применяют в небольших количествах лактозу, присутствие которой в среде для выращивания посевного мицелия желательно по следующей причине: ее потребление начинается не сразу, а после некоторого периода адаптации (привыкания), в течение которого происходит образование фермента, расщепляющего лактозу. Посевной мицелий, выращенный на среде, содержащей лактозу, обладает более высокой ферментативной активностью по отношению к трудноусвояемой лактозе и быстрее потребляет ее, что положительно сказывается на ходе ферментации.
Потребность гриба в азоте легко удовлетворяется минеральным азотом - аммонийным или нитратным. Помимо неорганического азота, в состав посевных сред, применяемых в промышленности, входит богатое органическим азотом растительное сырье типа кукурузного экстракта.Растительное сырье характеризуется не только наличием органического азота, оно содержит дополнительный углерод, входящий в состав аминокислот, полипептидов и белков, а также минеральные элементы, витамины и ростовые вещества.
Кроме углерода и азота, для роста микроорганизма необходимы фосфор, сера, магний, калий и микроэлементы – марганец, цинк, железо, медь. Большинство известных посевных сред содержит почти все вышеуказанные элементы, но в различных соотношениях. В таблице 1 приведен пример среды, применяемой для выращивания посевного материала.
Таблица 1 – Состав одной из сред для выращивания посевного материала.
Вещество | % |
Кукурузный экстракт | 2 (на сухой вес) |
Глюкоза | 2 |
Лактоза | 0,5 |
Азотнокислый аммоний | 0,125 |
Однозамещенный фосфорнокислый калий | 0,2 |
Сернокислый магний | 0,025 |
Сернокислый натрий | 0,05 |
Мел | 0,5 |
Существенное влияние на рост мицелия оказывает рН среды. Наиболее благоприятное значение рН для роста мицелия лежит между 6,0-6,5. При более кислом или более щелочном рН рост и развитие микроорганизма замедляются.
Выращивание посевного мицелия продолжается 36-50 часов до получения биомассы средней густоты. Мицелий, выращенный в инокуляторах, передается в количестве 10% по объему в посевные аппараты, где культивируется в течение 12-18 часов, а затем передается в большие ферментеры в количестве 15-20%. Процесс выращивания посевного мицелия 1-й и 2-й генерации осуществляется при температуре 24-26°.