Смекни!
smekni.com

Общие вопросы радионуклидной диагностики (стр. 3 из 7)

б) реакция (а, рп) - облучение α-частицами. При их взаимодействии образуются две частицы (нейтрон и протон):

О16(а, pn)®F18;


в) реакция (а, 2п) - облучения α -частицами. При их взаимодействии с ядрами мишени получаются два нейтрона:

Sb121(a, 2n) ®И123.

III. Третий метод - когда РФП получают вгенераторных системах.

Основные требования к любой подобной системе состоят в том, что радионуклид, который нас интересует, должен иметь короткий период полураспада относительно материнского радионуклида (у которого большой период полураспада). Он может быть выделен из материнского физическим или химическим методом. Например, Тс-99м получают из Мо-99. Период полураспада молибдена - 67, а технеция - 6 часов. Молибден получают из продуктов распада урана в ядерном реакторе. Радионуклид технеция вымывают из генератора физиологическим раствором. Приготовление РФП простое и в большинстве случаев подразумевает добавление элюата во флакон с реагентом (фармпрепаратом) в асептических условиях.

б) Требования к РФП.

Все РФП проходят аттестацию, такую же, как другие лекарства и фармацевтические препараты. Они должны иметь соответствующую химическую, радиохимическую, радионуклидную чистоту, быть стерильными и апирогенными.

Химическая чистота РФП определяется наличием внем других не радиоактивных веществ, особенно примесей тяжелых металлов.

Радиохимическая чистота РФП определяется частью радионуклида, которая находится в РФП в необходимой химической форме. Радиохимические примеси могут значительно влиять на достоверность получаемой информации. Радионуклидная чистота РФП состоит в отсутствии примесей радионуклидов которые могут создавать нежелательно высокие дозы облучения пациента, снижать точность и изменять результаты исследования. Этот вид чистоты контролируется радио- и спектрометрией.

Стерильность — достигается стерилизацией одним из 4-х способов:

паром, сухим теплом, фильтрацией, облучением (радиационная стерилизация).

Апирогенность - обеспечивается использованием апирогенных реагентов, растворов, посуды и соблюдения соответствующих требований в процессе производства и приготовления препаратов.

Наиболее важно, чтобы препарат дал полезную диагностическую информацию, был не дорогим и не вредным для пациентов.

в) Пути введения в организм РФП.

1.Энтеральный (per os). При таком пути введения РФП всасывается в кровь из желудочно-кишечного тракта и накапливается в исследуемом органе. (Всасывание радиоактивного йода при исследовании неорганического этапа обмена йода в организме).

2. Внутривенное введение РФП (используется для исследования функции и топографии печени, почек, сердечно-сосудистой системы, головного мозга и других органов).

3. Внутриартериальный.

4. Подкожный (для проведения непрямой лимфографии с целью оценки состояния лимфатических узлов при диагностике регионарных метастазов).

5. Внутрикожный (для оценки тканевой резорбции при заболеваниях сосудов).

6. Ингаляционный (для оценки вентиляционной способности легких и мозгового кровообращения).

7.В лимфатические сосуды (для проведения прямой лимфографии).

8. Непосредственно в ткани (для оценки мышечного кровообращения).

9. В спино-мозговой канал (для определения его проходимости).

г) Метаболизм РФП.

В состав радиофармпрепаратов могут входить химические элементы, являющиеся бета- или гамма-излучателями. Регистрируя излучение, определяют наличие, количество или метаболизм меченых препаратов. Выбирают такие препараты, метки которых имеют небольшой период полураспада (для уменьшения дозы облучения) и которые быстро выводятся. Если методика требует длительного времени для ее выполнения, то активность РФП должна быть достаточной для регистрации излучения к окончанию исследования.

РФП классифицируются:

1) по виду излучения:

- b-излучатели (32Р, тритий);

- γ-излучатели (99mТс, 123I, 113mIn);

- смешанные (131И, 198Аи).

2) по накоплению в органах и тканях:

- органотропные (198Аи-коллоид, 197Hg-промеран, 99mТс-пертехнетат);

- туморотропные (67Gа-цитрат);

- без селективного накопления в организме (тритиевая вода).

Органотропность может быть направленной, когда препарат выборочно концентрируется в органе и непрямой, когда РФП накапливается временно на пути его выведения из организма. Например, направленную органотропность к щитовидной железе имеет 131I, 125I; к печени - коллоидный раствор 198Аи; к поджелудочной железе – 75Se-метионин.

3) по периоду полураспада:

- ультракороткоживущие - период полураспада составляет минуты, часы;

- короткоживущие - период полураспада от нескольких часов до двух недель;

- долгоживущие - период полураспада более двух недель.

Радионуклидные методы исследования

Радионуклидная диагностика основана на возможности качественной и количественной регистрации излучений от радиофармацевтических препаратов (РФП), а также радиометрии биологических проб. Радионуклиды и их соединения подбираются таким образом, чтобы их поведение в организме человека не отличалось от поведения естественных веществ, а значит, отличие будет только в возможности давать излучение, т.е. «выдавать» свое местонахождение, количество и динамику содержания. Каждый РФП утверждается для использования Минздравом только после тщательных испытаний. Среди большого числа радионуклидов «зеленый свет» для диагностики получили лишь немногие: Tc-99m, In-113m, I-131, I-125, Se-75, In-111, Xe-133, Au-198, Hg-197. Из них наиболее часто используются лишь первые два: Технеций-99m и Индий-133m. Они – чистые гамма-излучатели (что и необходимо для эффективного исследования при минимальной дозе облучения) и их получают непосредственно перед исследованием в специальных генераторах. Лучевую безопасность при этом обеспечивает расчет оптимальной активности вводимого радионуклида. Активность подбирается таким образом, чтобы ее как раз хватило на проведение исследования. Дозы облучения пациента при этом четко регламентированы.

Возможность получения искусственных радиоактивных изотопов позволила расширить сферу применения радиоактивных индикаторов в различных отраслях науки, в том числе и в медицине. Радионуклидная визуализация основана на регистрации излучения, испускаемого находящимся внутри пациента радиоактивным веществом. Таким образом, общее между рентген- и радионуклидной диагностикой – использование ионизирующего излучения.

Радиоактивные вещества, называемые радиофармацевтическими препаратами (РФП), могут использоваться как в диагностических, так и в терапевтических целях. Все они имеют в своем составе радионуклиды – нестабильные атомы, спонтанно распадающиеся с выделением энергии. Идеальный радиофармпрепарат накапливается только в органах и структурах, предназначенных для визуализации. Накопление РФП может обусловливаться, например, метаболическими процессами (молекула-носитель может быть частью метаболической цепочки) либо локальной перфузией органа. Возможность изучения физиологических функций параллельно с определением топографо-анатомических параметров – главное преимущество радионуклидных методов диагностики.

Для визуализации используют радионуклиды, испускающие гамма-кванты, так как альфа- и бета-частицы имеют низкую проникающую способность в тканях.

В зависимости от степени накопления РФП различают «горячие» очаги (с повышенным накоплением) и «холодные» очаги (с пониженным накоплением или его отсутствием).

Существует несколько различных методов радионуклидного исследования.

Целью (общей) изучения данного раздела является умение интерпретировать принципы получения радионуклидного изображения и предназначение различных радионуклидных методов исследования.

Для этого необходимо уметь:

1) интерпретировать принципы получения изображения при сцинтиграфии, эмиссионной компьютерной томографии (однофотонной и позитронной);

2) интерпретировать принципы получения радиографических кривых;

3) трактовать предназначение сцинтиграфии, эмиссионной компьютерной томографии, радиографии.

Сцинтиграфия – самый распространенный метод радионуклидной визуализации.

Исследование проводится с помощью гамма-камеры. Основным ее компонентом является дисковидный сцинтилляционный кристалл йодида натрия большого диаметра (около 60 см). Этот кристалл является детектором, улавливающим гамма-излучение, испускаемое РФП. Перед кристаллом со стороны пациента располагается специальное свинцовое защитное устройство – коллиматор, определяющий проекцию излучения на кристалл. Параллельно расположенные отверстия на коллиматоре способствуют проецированию на поверхность кристалла двухмерного отображения распределения РФП в масштабе 1:1.

Гамма-фотоны при попадании на сцинтилляционный кристалл вызывают на нем вспышки света (сцинтилляции), которые передаются на фотоумножитель, генерирующий электрические сигналы. На основании регистрации этих сигналов реконструируется двухмерное проекционное изображение распределения РФП. Окончательное изображение может быть представлено в аналоговом формате на фотопленке. Однако большинство гамма-камер позволяет создавать и цифровые изображения.

Гамма-камерыописание, конструкция, разновидности.

Уникальная архитектура SKYLight позволяет смонтировать гамма камеру по периметру комнаты, создавая таким образом “открытую” конструкцию без гентри. Избавившись от ограничений традиционных напольных систем, SKYLight может осуществлять визуализацию широкого круга пациентов на различных типах столов и в различных положениях. Воплощая следующее поколение платформ ядерной визуализации, SKYLight также позволяет медицинскому персоналу выполнять визуализацию двух пациентов одновременно (отделяемых друг от друга специальной ширмой, исключающей повышенную лучевую нагрузку больных друг на друга и на персонал радионуклидной лаборатории), обеспечивая для перегруженных отделений радионуклидной диагностики уникальную пропускную эффективность. Детекторы, перемещаемые свободными роботизированными потолочными подвесами, имеют возможность поворота вокруг собственной оси. Эта особенность конструкции, наряду с возможностью перемещать или полностью отсоединять стол пациента позволяет практически без ограничений проводить исследования пациентов на каталке, функциональной кровати и кресле-каталке, что особенно важно в онкологической практике.