Смекни!
smekni.com

Диагностические методы исследования, основанные на регистрации электрических полей (стр. 1 из 6)

Министерство образования и науки Украины

Одесский национальный университет имени И.И.Мечникова

Кафедра экспериментальной физики

Отделение медицинской физики

Диагностического и лечебного оборудования

ДИАГНОСТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЙ, ОСНОВАННЫЕ НА РЕГИСТРАЦИИ ЭЛЕКТРИЧЕСКИХ ПОЛЕЙ

Курсовая работа

студентки ІV курса

физического факультета

Аликсандренко Маргариты Владимировны

Научный руководитель

профессор Ваксман Ю.Ф.

Одесса – 2010


СОДЕРЖАНИЕ

Введение

1. Суть метода электрокардиографии

1.1 Общие определения и понятия электрокардиографии

1.2 Расширенные диагностические возможности ЭКГ

1.3 Обзор современной аппаратуры электрокардиографии

2. Особенности электроэнцефалографических измерений

2.1 Общие определения и понятия электроэнцефалограммы

2.2 Функциональные пробы

2.3 Аппаратура для электроэнцефалографических исследований

2.4 Обзор современной аппаратуры электроэнцефалографии

3. Миографические исследования

3.1 Общие определения и понятия электромиографии

3.2 Методики обследования, применяемые в электромиографии

3.3 Обзор современной аппаратуры электромиографии

Выводы

Литература


Введение

Человеческий организм с точки зрения физики является чрезвычайно сложной неравновесной системой, открытой к внешним воздействиям, причем, не только физическим, но и информационным. Вместе с тем, среди множества физиологических процессов, протекающих в организме, ряд процессов близки к физическим, то есть они могут быть описаны физическими законами. Например, процесс кровообращения, по сути, является физическим, так как связан: с механической работой сердца (механика); с генерацией биопотенциалов (электричество) и т п. В связи с этим многие медицинские методики лечения и диагностики основаны на использовании физических идей и принципов.

В клинической практике прямое измерение разности потенциалов на самом органе (сердце, мозге, т.п.) трудноосуществимо. Поэтому для оценки функционального состояния органа по его электрической активности используют принцип эквивалентного генератора. Он состоит в том, что изучаемый орган, состоящий из множества клеток, возбуждающихся в различные моменты времени, заменяется моделью единого эквивалентного генератора. Считают, что этот эквивалентный генератор находится внутри организма и создает на поверхности тела электрическое поле, такое же, как и поле, создаваемое органом. То есть распределение потенциалов, порождаемых органов, по поверхности тела, их изменения во времени должны быть близки к потенциалам, порождаемым гипотетическим (воображаемым) генератором.

Метод исследования работы органов или тканей, основанный на регистрации во времени потенциалов электрического поля на поверхности тела, называется электрографией. Два электрода, приложенные к разным точкам на поверхности тела, регистрируют временную зависимость разности потенциалов ∆φ(t), которая называется электрограммой. Название электрограммы указывает на орган, который исследуют. В частности, сердце – электрокардиограмма (ЭКГ); головной мозг - электроэнцефалограмма (ЭЭГ); мышцы – электромиограмма (ЭМГ).

Целью данной работы является изучение диагностических методов, основанных на измерениях электрических полей.


1. СУТЬ МЕТОДА ЭЛЕКТРОКАРДИОГРАФИИ

1.1 Общие определения и понятия электрокардиографии

Среди многочисленных инструментальных методов исследования, которыми в совершенстве должен владеть современный практический врач, ведущее место справедливо принадлежит электрокардиографии. Этот метод исследования биоэлектрической активности сердца является сегодня незаменимым в диагностике нарушений ритма и проводимости, гипертрофий желудочков и предсердий, ишемической болезни сердца, инфарктов миокарда и других заболеваний сердца.

Электрокардиография (ЭКГ) - является неинвазивным тестом, проведение которого позволяет получать ценную информацию о состоянии сердца. Суть данного метода состоит в регистрации электрических потенциалов, возникающих во время работы сердца и в их графическом отображении на дисплее или бумаге. На рис. 1 изображен пример периода электрокардиограммы, где показаны зубцы и сегменты, на которые условно делят период ЭКГ.

Рис. 1. Зубцы и сегменты ЭКГ


Запись производится с поверхности тела пациента (верхние и нижние конечности и грудная клетка).

Изменения разности потенциалов на поверхности тела, возникающие во время работы сердца, записываются с помощью различных систем отведений ЭКГ. Каждое отведение регистрирует разность потенциалов, существующую между двумя определенными точками электрического поля сердца, в которых установлены электроды. Таким образом, различные электрокардиографические отведения отличаются между собой, прежде всего участками тела, от которых отводится разность потенциалов.

Электроды, установленные в каждой из выбранных точек на поверхности тела, подключаются к гальванометру электрокардиографа. Один из электродов присоединяют к положительному полюсу гальванометра (это положительный, или активный, электрод отведения), второй электрод — к его отрицательному полюсу (отрицательный электрод отведения).

В настоящее время в клинической практике наиболее широко используют 12 отведений ЭКГ, запись которых является обязательной при каждом электрокардиографическом обследовании больного: 3 стандартных отведения, 3 усиленных однополюсных отведения от конечностей и 6 грудных отведений.

Стандартные двухполюсные отведения, предложенные в 1913 г. Эйнтховеном, фиксируют разность потенциалов между двумя точками электрического поля, удаленными от сердца и расположенными во фронтальной плоскости – конечностях (рис.2).


Рис. 2. Трехосевая система координат стандартных отведении. Красным цветам показаны оси трех стандартных отведений от конечностей в треугольнике Эйнтховена (а) и в трехосевой системе координат (б).

Усиленные отведения от конечностей (рис.3) были предложены Гольлберегером в 1942 г. Они регистрируют разность потенциалов между одной из конечностей, на которой установлен активный положительный электрод данного отведения (правая рука, левая рука или левая нога), и средним потенциалом двух других конечностей. Таким образом, в качестве отрицательного электрода в этих отведениях используют так называемый объединенный электрод Годьдбергера, который образуется при соединении через дополнительное сопротивление двух конечностей.

Рис. 3. Формирование трех усиленных однополюсных отведении от конечностей. Внизу - треугольник Эйнтховена и расположение осей трех усеченных однополюсных отведений от конечностей

По ЭКГ можно оценить источник (так называемый водитель) ритма, регулярность сердечных сокращений, их частоту. Все это имеет большое значение для диагностики различных аритмий. По продолжительности различных интервалов и зубцов ЭКГ можно судить об изменениях сердечной проводимости. Изменения конечной части желудочкового комплекса (интервал ST и зубец Т) позволяют врачу определить наличие или отсутствие ишемических изменений в сердце (нарушение кровоснабжения).

Важным показателем ЭКГ является амплитуда зубцов. Увеличение ее говорит о гипертрофии соответствующих отделов сердца, которая наблюдается при некоторых заболеваниях сердца и при гипертонической болезни.

ЭКГ весьма мощный и доступный диагностический инструмент, однако стоит помнить о том, что и у этого метода есть слабые места. Одним из них является кратковременность записи – около 20 секунд. Даже если человек страдает, например, аритмией, в момент записи она может отсутствовать, кроме того запись, обычно производится в покое, а не во время привычной деятельности.

1.2 Расширенные диагностические возможности ЭКГ

Для того чтобы расширить диагностические возможности ЭКГ прибегают к длительной ее записи, так называемому мониторированию ЭКГ по Холтеру в течение 24-48 часов. Этот метод позволяет оценить деятельность сердца в условиях обычной активности пациента (реакции сердца на физическую и эмоциональную нагрузки, ритм и проводимость сердца в течение суток, состояние сердца во время сна и т. д.), при этом пациент записывает, в какое время что конкретно он делал (спал, гулял, поднимался по лестнице, ел и т. д.). Это метод непрерывной регистрации электрокардиограммы на магнитную ленту или твердотельный диск за определенный период времени: от нескольких часов до двух суток с последующей обработкой информации на компьютерном дешифраторе.

Также, значительно расширяют диагностические возможности метода электрокардиографии функциональные пробы. Они позволяют выявить скрытые электрокардиографические нарушения, которые по разным причинам не могли быть зарегистрированы при обычном электрокардиографическом исследовании в покое (скрытая коронарная недостаточность, преходящие нарушения ритма). Из всего множества функциональных проб наиболее эффективными являются пробы с дозированной физической нагрузкой, которые применяются с целью выявления скрытой коронарной недостаточности, преходящих нарушений ритма сердца и для установления индивидуальной толерантности больных к физической нагрузке.

Физическая нагрузка, как известно, оказывает разнообразное действие на сердечно-сосудистую систему, вызывая, в частности, тахикардию, умеренное повышение артериального давления, увеличение работы сердца и, соответственно, потребности миокарда в кислороде. У здорового человека это приводит к адекватному расширению коронарных сосудов и увеличению сократимости миокарда. В условиях лимитированного коронарного кровообращения у больных атеросклерозом коронарных артерий увеличение потребности миокарда в кислороде приводит к острой коронарной недостаточности, сопровождающейся приступом стенокардии и изменениями на ЭКГ.