Задача Рози, — приготовление и распределение лекарств сотен наименований. Работает он круглосуточно, практически не делает перерывов и при этом совершенно не ошибается. За два с половиной года службы в больничной аптеке не было ни одного случая, когда бы пациенту отправили не то лекарство. Коэффициент точности работы Рози — 99,7 процентов, а это значит, что сортировка и дозировка прописанных препаратов никогда не отличается от тех, что указаны в рецептах врачей.
Более того, Рози помог своевременно обнаружить множество ошибок. Рози никогда не отправит больному лекарство с истекшим сроком годности. Залогом его точности являются заложенные в электронный мозг машины государственные стандарты контроля качества. Между тем, согласно данным Национального института здоровья в Вашингтоне из-за ошибок с лекарствами в стране ежегодно умирают около 50 тысяч человек. Но приготовление и распределение лекарств — не единственная проблема, которую в Пресвитерианской больнице решили с помощью Рози. До его появления было очень сложно следить за отпуском наркотических средств: сотрудники тратили уйму времени, пересчитывая таблетки, чтобы ни одна из них не осталась неучтенной. Сегодня от этой рутинной работы их освободил робот Рози.
Но и это еще не все. Механической “рукой” скользящий по рельсу Рози собирает висящие вдоль стен маленькие пакетики с таблетками, на каждый из которых нанесен уникальный бар-код. Затем он вкладывает их в герметические конверты и отправляет пациентам.
На свет так же появились два робота помощника – это робот нянька, который ухаживает за больными людьми, в частности страдающими от болезни Альцгеймера, и робот физиотерапевт, позволяющий быстрее адаптироваться людям перенесшим инсульт.
Недавно американские пациенты с болезнью Альцгеймера получили помощника, который облегчает им общение с врачами и родственниками. Оборудованный камерой, экраном и всем необходимым для беспроводной связи через Интернет, робот Companion позволяет врачу контактировать с пациентом, который находится в специализированной клинике. Робот также используется для обучения персонала, помощи пациентам, имеющим проблемы с передвижением, общения пациентов с детьми. Как ни странно, пациенты, обычно неохотно принимающие все новое, отнеслись к механическому собеседнику совсем неплохо: показывали на него, смеялись, даже пытались заговаривать с ним.
По мнению исполнительного директора создавшей машину компании InTouch Health Юлина Ванга, применение роботов при уходе за престарелыми людьми может снять остроту проблемы старения нации. В условиях, когда уже к 2010 году число пенсионеров в стране возрастет до 40, а к 2030 — до 70 миллионов, это очень важно. Пока же фирма собирается сдавать своих роботов в аренду домам престарелых. В будущем компания планирует создание роботов, которые смогут приводить в движение инвалидную коляску.
Настоящий шаг в будущее сделали инженеры из Массачусетского технологического института, заменившие врача-физиотерапевта роботом. Как известно, люди, перенесшие инсульт, надолго забывают о своей привычной жизни. В течение многих месяцев и даже лет они вновь учатся ходить, держать ложку в руках, совершать те обыденные действия, о которых раньше даже не задумывались. Теперь им могут помочь не только врачи, но и роботы.
Речь идет о сеансах физиотерапии, необходимых для восстановления координации движений рук. Сейчас пациенты обычно занимаются с врачами, которые показывают им соответствующие упражнения. В отделения реабилитации Бостонского городского госпиталя, где проводятся испытания новой установки, выздоравливающему от инсульта предлагается с помощью джойстика перемещать на экране по заданной траектории небольшой курсор. Если же человек не может этого сделать, управляемый компьютером джойстик с помощью встроенных электромоторов сам переместит его руку в необходимое положение.
Врачи остались довольны работой новинки. В отличие от человека, робот может совершать одни и те же движения тысячи раз в день и при этом не уставать. Что касается самих врачей, то им не стоит бояться безработицы: просто вместо того, чтобы часами сидеть с больными, они смогут разрабатывать новые, более эффективные программы тренировок.
Так как медицина является довольно обширной областью науки, не обошлось здесь и без вмешательства современных нанотехнологий. Вот что можно отметить в этом разделе.
Беспорядочно мельтешащие под микроскопомбактериивнезапно замирают на месте. Затем, будто сговорившись, начинают выстраиваться в ровную линию. Микробы за считаные секунды занимают свои места в колонне, и тут в движение приходит весь строй -бактериикак по команде синхронно поворачиваются налево.
Движениями микробов действительно управляют. Этим занимается сидящий за пультом ученый - профессор Политехнической школы Монреаля Сильван Мартель. Созданная канадским ученым установка контролирует перемещениебактерийс помощью магнитного поля с точностью до тысячных долей миллиметра. Недавно исследователь показал свой прибор в действии. 5000бактерийсогласованно передвигали в капле воды микроскопические полимерные блоки и сложили из них миниатюрное строение.
Это только начало испытаний. В ближайшем будущем такую «рабочую силу» можно будет применить с большей пользой - в медицине. Уже много лет в лабораториях по всему миру пытаются создатьМИКРОРОБОТОВ, которые смогли бы выполнять различные операции внутри организма пациентов. Дальше простейшихпрототипову инженеров дело пока не пошло. Теперь ученые получили возможность пойти обходным путем - на смену сложным и неэффективным устройствам приходят микроорганизмы.
Возведенноебактериямистроение можно разглядеть только под микроскопом. Оно напоминает египетскую пирамиду. Сходство не случайно. «Пирамиды - один из первых шагов человека к созданию действительно сложных конструкций, - рассказывает Сильван Мартель. - Мы подумали, что будет символично, если микроорганизмы выполнят именно такое задание». Настоящие пирамиды сооружали многие годы.Бактерииуправились с моделью за 15 минут. Это, несмотря на то, что строительные блоки были куда крупнее самих «рабочих».
Микроорганизмы работали сообща. Под микроскопом 5000бактерийвыглядели как сплошное темное облако. Вот этот рой нависает над одним из «кирпичей». В следующую секунду микробы начинают медленно, но верно толкать блок на заданное в чертеже место. «Мы пока только обкатываемтехнологию, - говорит Мартель. - В принципе, все то же самое можно делать значительно быстрее».
Секрет успеха - в выдающихся способностях этих микроорганизмов. Канадские ученые используют в работебактерииMagnetospirillum magnetotacticum. «Оказалось, это настоящие рекордсмены, - объясняет Мартель. - Они движутся на порядок быстрее другихбактерий». Кроме того, эти микроорганизмы чувствительны к магнитным полям - они в больших количествах накапливают в себе соединения железа. Ученые пока не очень хорошо понимают, зачем это нужно самим микробам. Зато теперь понятно, как такую особенность может использовать человек. С помощью магнитного поля Мартель заставляетбактерииразворачиваться в нужную сторону. Дальше они двигаются самостоятельно - у них есть специальные жгутики, работающие, как гребные винты кораблей.
Они могут перемещаться не только в капле воды под микроскопом. Канадский ученый ввелбактериив кровь лабораторных крыс и с помощью магнитного поля заставил микробов маневрировать в сосудах. Оказалось, бактерии способны двигаться даже против течения. Правда, преодолевать поток им удавалось только в небольших капиллярах, где кровь циркулировала медленно. В крупных артериях «пловцов» безнадежно сносило - скорость жидкости там достигала нескольких десятков сантиметров в секунду. Размножаться в крови эти микробы не способны, поэтому на здоровье грызунов их присутствие не повлияло. Микроорганизмы некоторое время двигались по сосудам, а затем погибли.
Эффективности бактериальных двигателей позавидует любой инженер. «Главная проблема, о которую разбиваются попытки создать медицинскихМИКРОРОБОТОВ, - их габариты, - рассуждает Владимир Лобаскин, физик из Университетского колледжа Дублина. - Требования к размеру этих устройств таковы, что для них очень непросто создать достаточно мощный мотор». Сам Лобаскин занимается теоретическими расчетами эффективности как раз таких вот микроскопических двигателей. «Технические характеристики»бактерийМартеля произвели на физика большое впечатление: «Это практически готовая система для решения медицинских задач».
Похоже, разработчикам настоящихМИКРОРОБОТОВна это действительно нечем ответить. Один из самых последнихпрототиповбыл создан несколько лет назад в швейцарском Институтеробототехникии интеллектуальных систем. Он представляет собой крошечную металлическую спираль, которую можно разглядеть только под очень мощным микроскопом. Попав в переменное магнитное поле, она начинает вращаться и работать, как пропеллер. Направлением движения этого устройства тоже можно управлять с помощью магнитов.
Со временем разработчики рассчитывают использовать его для доставки лекарств в различные ткани человеческого организма. Пока получается не очень хорошо. Эти изделия примерно в десять раз медленнее «живыхроботов», с которыми работают в Канаде. О маневрах в кровеносных сосудах говорить даже не приходится. В этом нет ничего удивительного, уверен Мартель. За миллионы лет эволюция хорошо поработала надбактериями. Быстро создать такое же совершенное искусственное устройство будет очень непросто.