Существенное значение в процессе заживления лазерных ран имеют клетки системы мононуклеарных фагоцитов — макрофаги. Макрофаги управляют дифференцировкой гранулоцитов и моноцитов из стволовой клетки, влияют на функциональную активность Т- и В-лимфоцитов, а также принимают участие а их кооперации. Они секретируют шесть первых компонентов комплемента, являясь, таким образом, посредниками привлечения иммунной системы в воспалительную реакцию. Макрофаги индуцируют роль фибробластов и синтез коллагена, т. е. являются стимуляторами завершающей фазы репаративной реакции) при воспалении. В частности, обнаружены клеточные контакты между макрофагами и фибробластами грануляционной ткани.
Можно предположить, что интенсивная и продолжительная макрофагальная реакция в лазерных ранах, связанная с длительной сохранностью коагулированных тканей, является фактором, активно стимулирующим процесс коллагенообразования..По мнению В. И. Елисеенко и соавт. (1982, 1985), функциональная роль пролиферирующих макрофагов заключается в «программировании» всего хода процесса заживления лазерных хирургических ран.
Фибробластическая реакция в процессах раннего заживления лазерных ран занимает одно из ведущих мест.
В лазерных ранах в период активного роста грануляционной ткани (5—10-е сутки) высокая плотность расположения фибробластов сочетается с наиболее резким увеличением активности НАД (НАДФ)-липоамид-дегидрогеназы (устар. диафоразы) в этих клетках, что в определенной степени может отражать повышение в них уровня энергетических и синтетических процессов. Позднее ферментативная активность этих клеток постепенно снижается, что свидетельствует об их созревании.
В формирующемся рубце лазерной раны происходит быстрое, диффузное накопление гликозаминогликанов основного вещества соединительной ткани, что свидетельствует о созревании грануляционной ткани. Известно, что после максимального увеличения числа фибробластов и их созревания усиливается и синтез коллагеновых волокон.
В процессе заживления лазерных хирургических ран органов желудочно-кишечного тракта прослеживается отчетливая взаимосвязь созревания соединительной ткани с ростом эпителия.
Таким образом, реакция макрофагов, пролиферация фибробластов и коллагеногенез проявляются очень рано и выражены тем сильнее, чем менее выражена лейкоцитарная инфильтрация, отсутствие которой обеспечивает заживление лазерных ран первичным натяжением.
7 МЕХАНИЗМЫ ЛАЗЕРНОЙ БИОСТИМУЛЯЦИИ
Отдельно следует рассмотреть вопрос о природе биостимулирующей активности низкоэнергетического лазерного излучения красной области спектра, которое получают главным образом с помощью гелий-неоновых лазеров. Благотворное влияние этого излучения было установлено в экспериментах на разных биологических объектах.
В 70-х годах были сделаны попытки объяснить явление лазерной биостимуляции особыми свойствами («биополе», «биоплазма»), которые якобы присущи живым организмам и придают специфическим характеристикам лазерного излучения биологическую значимость. В 1979 г. было выдвинуто предположение, что биологические эффекты низкоэнергетического лазерного излучения связаны с естественными процессами световой регуляции, наблюдающимися у животных. Молекулярная основа начальных этапов таких процессов лучше изучена у растений, для которых установлены не только сам факт фоторегуляции, но и химическая природа одного из первичных акцепторов света— фитохрома. Этот хромопротеид существует в двух формах, одна из которых поглощает свет вблизи 660 нм, а другая — 730 нм. Вследствие взаимопревращения этих форм при освещении меняется их количественное соотношение, что является пусковым механизмом в цепи процессов, приводящих в конечном счете к прорастанию семян, образованию почек, зацветанию растений и другим формообразовательным эффектам. Хотя не вызывает сомнения тот факт, что и у животных в основе таких явлений, как цикличность полового размножения или приуроченность ряда приспособительных реакций (линька и спячка млекопитающих, перелеты птиц) к определенным периодам года, лежат фоторегуляторные процессы, молекулярные механизмы их неясны
Представления о существовании в клетках животных определенной фоторегуляторной системы, возможно, напоминающей фитохромную систему растений, позволяют предположить, что биостимуляционная активность излучения гелий-неонового лазера является следствием простого совпадения его спектральных характеристик с областью поглощения компонентов этой системы. В этом случае следовало ожидать, что монохроматический красный свет некогерентных источников будет также биологически эффективным. Для экспериментальной проверки этого и других вопросов были необходимы чувствительные тесты, дающие количественные, хорошо воспроизводимые и точно измеряемые результаты. Подавляющее большинство исследований с гелий-неоновым лазером было проведено на животных или непосредственно на больных в условиях, не отвечающих этим требованиям.
При выборе подходящей модельной системы исходили из двух предпосылок: 1) клетки, развивающиеся или переживающие в условиях invitro, представляют собой сравнительно простой тест-объект, позволяющий проводить точный учет условий воздействия и его результатов; 2) особого внимания заслуживает реакция поверхностной мембраны клеток, высокая чувствительность которого установлена ранее в опытах с низкоэнергетическим красным излучением рубинового лазера .
В исследованиях, проведенных Н. Ф. Гамалея и др. было изучено влияние излучения гелий-неонового лазера на поверхностную мембрану лимфоцитов, выделенных из крови человека. С этой целью оценивали способность лимфоцитов образовывать Е-розетки — взаимодействовать с эритроцитами барана. Установлено, что при низких дозах облучения (плотность мощности 0,1—0,5 Вт/м2, экспозиция 15 с), которые на полтора —два порядка ниже, чем используемые в клинических работах с гелий-неоновым лазером, происходит небольшое, но статистически достоверное повышение розеткообразовательной способности (в 1,2—1,4 раза) у облученных лимфоцитов по сравнению с контролем. Параллельно с цитомембранными изменениями повышалась функциональная активность лимфоцитов, в частности в 2— 6 раз возрастала их способность к делению, которую определяли в реакции бласттрансформации с фитогемагглютинином [Новиков Д. К., Новикова В. И., 1979], оценивая по накоплению клетками 3Н-тимидина. В экспериментах на лейкоцитах крови человека было установлено, что при воздействии на них излучения гелий-неонового лазера в таких же низких дозах в 1,5—2 раза усиливается фагоцитоз клетками кишечной палочки (как захватывание, так и переваривание). Излучение гелий-неонового лазера оказывало стимулирующее действие также на другие клетки. Так, в культуре опухолевых клеток мыши (L) задержка их роста в 1-е сутки после облучения сменялась его ускорением, которое было особенно заметно на 3—4-е сутки, когда количество делящихся клеток в 2 раза больше, чем в контроле
Таким образом, было показано, что излучение гелий-неонового лазера очень низкой интенсивности вызывает изменения в мембране клеток разных типов и стимуляцию их функциональной активности. Изменения цитоплазматической мембраны в культивируемых клетках китайского хомячка, облученных гелий-неоновым лазером, выявили также А. К. Абдвахитова и др. (1982) с помощью метода флюоресцентных зондов, хотя использованные ими дозы излучения на два порядка превышали примененные нами.
В гипотезе, выдвинутой венгерским хирургом Е. Местером совместно с группой физиков, предпринята попытка объяснить биостимуляционную активность лазерного излучения исключительно его поляризованностью: благодаря поляризации излучения оно способно реагировать с полярными молекулами липидов в двойном липидном слое цитоплазматической мембраны, что и запускает цепь изменений в клетке. Согласно предложенной модели, стимулирующий эффект не должен зависеть от длины волны излучения. Однако экспериментальные данные этого не подтверждают.
Надежная воспроизводимость биостимуляционного эффекта позволила пойти дальше и попытаться выяснить, вызывается ли этот эффект только лазерным (когерентным, поляризованным) излучением и как он зависит от длины волны. С этой целью путем применения теста на розеткообразование было оценено влияние на лимфоциты крови человека монохроматического красного света (633 ± 5 нм), полученного от ксеноновой лампы с помощью дифракционного монохроматора. Установлено, что при сравнимой дозе некогерентного красного света (3 Дж/м3) процесс розеткообразования стимулировался так же, как и при использовании гелий-неонового лазера.
Далее эффект красного света был сопоставлен с действием излучения других узких спектральных участков видимой области. При этом активность света оценивали по его влиянию на три процесса: образование Е-розеток лимфоцитами человека, размножение клеток культуры L и выделение в среду лимфоцитами мышей вещества с максимумом поглощения 265 нм. (Последний тест являлся развитием результатов проведенных наблюдений и основывался на том, что из подвергнутых лазерному облучению клеток усиливается выделение определенного химического фактора, имеющего полосу поглощения в области 260— 265 нм.) Опыты показали , что стимуляция всех трех процессов отмечается при облучении монохроматическим светом одних и тех же спектральных участков: красного (633 нм), зеленого (500 и 550 нм) и фиолетового (415 нм).
Таким образом проведенные исследования позволили выявить у разных клеток человека и животных наличие высокой световой чувствительности, даже значительно большей, чем можно было ожидать на основании клинических результатов лазерной биостимуляционной терапии. Эта чувствительность не была обусловлена когерентностью и поляризацией света и не ограничивалась красной областью спектра: наряду с максимумом в этой области имелись два других — в фиолетовом и зеленом участках спектра.