Разумеется, большинство потребителей, применяющих косметику, желают не только временно улучшить свой внешний вид (хотя это не маловажно). Обычно от косметики ожидают большего. Особенно это касается косметических линий, на которых работают профессиональные косметологи, и тех косметических средств, о которых до сих пор спорят законодатели, балансируя между понятиями "лечебная косметика", "космецевтика" и прочее.
В подобные косметические рецептуры обязательно входят биологически активные добавки, призванные оказывать определенное физиологическое воздействие на кожу. Чаще всего производители косметики, косметологи и сами потребители сосредотачивают свое внимание лишь на этой категории ингредиентов. Однако косметические средства, помимо БАД-ов, содержат другие вещества, с действием которых на кожу также надо считаться. Современная химическая промышленность позволяет фирмам - производителям косметики достичь совершенства в искусстве иллюзионизма - косметические средства мгновенно создают видимость улучшения кожи.
Ничего не поделаешь, ведь этого требует психология потребителя, который, примеряясь к стремительному темпу жизни, хочется получать все сразу - исцеление от болезней, решение личных проблем и улучшение внешности. Наша цель - разобраться в этой кухни, чтобы обеспечить своей коже хороший уход, по возможности оградив её от вредных воздействий.
Основа косметического средства. Основа КС - это то, что остается от него, если вычесть биологически активные добавки. Надо сказать, что остается довольно много (соотношение основы и активных добавок рис.1.2).
Рис.1.2 Соотношение основы и активных добавок в косметической рецептуре.
Основы для наружных препаратов в отличие от активного лекарственного вещества не оказывают непосредственно терапевтического действия. Тем не менее правильный выбор основы может значительно улучшить качество терапии даже независимо от силы активного компонента (табл.1.2).
Таблица 1.2. Основы для наружных средств.
Мазевая основа препарата выполняет две задачи: обеспечивает терапевтический потенциал активного лекарственного вещества за счет длительного контакта и может использоваться как смягчающее средство для поддерживающей терапии (табл.1.3).
Таблица 1.3. Типы основ кремов и мазей.
Флавоноиды - это растительные ароматические соединения, производные дифенилпропана (С6-С3 - С6) различной степени окисленности и замещения. Флавоноиды можно рассматривать как производные хромана и хромона, содержащие в положении 2, 3 или 4 арильный радикал.
Классификация флавоноидов основана на ряде признаков, таких как степень окисленности пропанового фрагмента, положение бокового фенильного радикала, величина гетероцикла и др. По расположению кольца В выделяют собственно флавоноиды (эуфлавоноиды), изо- и неофлавоноиды.
В растениях флавоноиды встречаются преимущественно в виде гликозидов реже - в виде агликонов. Многообразие флавоноидных гликозидов обусловлено значительным набором сахаров и местом присоединения их к агликону, а также тем, что сахара могут иметь различную величину и конфигурацию циклов и гликозидных связей (фуранозная и пиранозная формы моносахаридов, D - и Z-изомеры, а - или Р-связь), порядок и сочетание сахаров и связей.
По типу связи различают О - и С-гликозиды флавоноидов. О-гликозиды легко гидролизуются кислотами и ферментами. С-гликозиды не гидролизуются ферментами и разбавленными кислотами, их гидролиз осуществляется смесью Килиани (хлористоводородная концентрированная и уксусная кислоты).
Физико-химические свойства. Флавоноиды (от лат. flavus - желтый) - кристаллические оптически активные вещества, имеющие окраску от белой до желто-оранжевой в зависимости от структуры. Например, флаваноны, изофлавоны - бесцветные, флавоны и флавонолы - желтые, халконы и ауроны имеют цвет от ярко-желтого до красно-оранжевого. Антоцианы окрашены в красный или синий цвет в зависимости от рН среды. Флавоноиды лишены запаха, некоторые из них имеют горький вкус. Самым горьким является нарингенин, который в 5 раз более горький, чем хинина гидрохлорид.
Агликоны хорошо растворяются в диэтиловом эфире, ацетоне и спиртах, почти не растворяются в бензоле и хлороформе. Флавоноидные гликозилы растворяются в спиртах и спирто-водных смесях. Монозиды лучше растворимы в крепком спирте, дигликозиды - в 50 % -ном спирте, гликозиды с тремя и более сахарами - в слабом спирте и даже в воде.
Выделение. Для выделения флавоноидов используют последовательную экстракцию сырья рядом органических растворителей с возрастающей полярностью: хлороформ, ацетон, спирт и спирто-водные смеси.
Для качественных реакций используют извлечение, очищенное от сопутствующих липофильных веществ.
Качественные реакции. Общей реакции, специфической для всех классов флавоноидов, не существует. Наиболее часто для обнаружения флавоноидов в ЛPC применяют цианидиновую реакцию (проба Snoda). Реакция основана на восстановлении флавоноидов атомарным водородом в кислой среде до антоцианидинов с образованием ярко-розового окрашивания.
Цианидиновую реакцию не дают халконы, ауроны, катехины, но они могут образовывать в кислой среде окрашенные оксониевые соли.
Цианидиновая реакция по Брианту позволяет определить агликоновую или гликозидную природу исследуемого вещества. К окрашенному раствору продукта цианидиновой реакции прибавляют равный объем н-октанола и встряхивают. Гликозиды остаются в воде, а агликоны переходят в слой органического растворителя.
С раствором щелочи флавоны, флавонолы, флаваноны приобретают желтое окрашивание, халконы и ауроны - желто-оранжевое, оранжево-красное.
С железа (III) хлоридом образуются окраски от зеленой (флавонолы) до коричневой (флаваноны, халконы, ауроны) и красновато-бурой (флавоны).
Флавоны, халконы, ауроны, содержащие свободные ортогидроксильные группы в кольце В, при обработке спиртовых растворов свинца ацетатомсредним образуют осадки, окрашенные в ярко-желтый или красный цвета. Антоцианы образуют осадки, окрашенные как в красный, так и в синий цвет.
Флавоноиды вступают в реакцию комплексообразования с 5 % -ным спиртовым раствором алюминия хлорида, с 2 % -ным спиртовым раствором циркония (III) хлорида. Флавоноиды, имеющие две оксигруппы у С-3 и С-5, дают хелаты желтого цвета за счет образования водородных связей между карбонильной и гидроксильными группами.
Реакция с борно-лимонным реактивом (реакция Вильсона). Флавоноиды, у которых гидроксильная и карбоксильная группы отделены углеродным атомом, образуют комплексы с кислотой борной, которые не разрушаются лимонной и щавелевой кислотами.
При этом появляется желтая окраска или ярко-желтая флуоресценция, которая резко усиливается в УФ-свете.
Флаваноны и флаванонолы восстанавливаются натрия боргидридом с образованием окрашенных продуктов пурпурно-красного, фиолетового или синего цвета.
Катехины, а также производные флороглюцина и резорцина с 1 % -ным раствором ванилина в кислоте хлористоводородной концентрированной образуют малиново-красное окрашивание.
Хроматографический анализ. Для идентификации флавоноидов широко применяют различные виды хроматографии: бумажную, ТСХ, газожидкостную. Учитывают окраску пятен в видимом и УФ-свете до и после проявления хромогенными реактивами, величину Rf, или время удерживания.
Флавоны и флавонол-3-гликозиды в УФ-свете обнаруживаются в виде коричневых пятен; флавонолы и их 7-гликозиды - в виде желтых или желто-зеленых пятен. Изофлавоноиды в видимом свете не проявляются.
После просматривания в УФ-свете хроматограммы обрабатывают одним из реактивов: 5 % -ным спиртовым раствором AlCl3 с последующим нагреванием при 100±5°С в течение 3-5 мин; 5 % -ным раствором SbCl3 в тетрахлорметане; 10 % -ным спиртовым раствором щелочи. Это позволяет получить зоны с более яркой флюоресценцией в УФ-свете (таб 2.1).
Таблица 2.1
Окраска пятен флаваноидов на хроматограммах.
Количественное определение. Универсального метода количественного определения флавоноидов нет. В каждом отдельном случае подходят индивидуально, используя весовой, фотометрический, полярографический, потенциометрический, объемный или комплексонометрический методы.
Наибольшее распространение получили спектральные методы анализа, которые можно классифицировать по реакциям образования окрашенных продуктов: восстановления в кислой среде или с натрия боргидридом; реакции комплексообразования с металлами; соединение с солями диазония; взаимодействие со щелочами.