Смекни!
smekni.com

Моделювання біофізичних процесів зорової системи (стр. 2 из 3)

Третій етап дозволяє з'ясувати, наскільки висунута гіпотетична модель задовольняє критерію практики. Рішення цього питання зв'язано з відповідністю теоретичних наслідків експериментальним результатам. У рамках цього етапу часто зважується зворотна задача, у якій визначаються не відомі раніше деякі характеристики моделі за результатами зіставлення вихідної інформації з результатами спостережень.

Запропонована модель непридатна, якщо ні при яких значеннях її характеристик не можна погодити вихідну інформацію з експериментом.

У четвертий етап входить аналіз моделі в результаті нагромадження даних про неї і її модернізація.

У залежності від характеру моделей їх умовно поділяють на феноменологічні і структурні.

Феноменологічні (функціональні) моделі відбивають тимчасові і причинно-наслідкові відносини між параметрами, що характеризують функції біологічного об'єкта без обліку його структури.

Об'єкт розглядається як «чорна шухляда» – система, у якій зовнішньому спостерігачу доступні лише вхідні і вихідні величини, а внутрішня структура невідома. Метод «чорної шухляди» широко застосовують для рішення задач моделювання складних кібернетичних систем у тих випадках, коли інтерес представляє поводження системи. Так, наприклад, з огляду на складну «конструкцію» мозку людини і ризик прямого приладового впровадження в його структури, резонно досліджувати мозок як «чорна шухляда». Це можна робити, досліджуючи розумові здібності людини, його реакцію на звук, світло і т.д.

Структурні моделі будуються з урахуванням структури об'єкта, що відбиває його ієрархічні рівні.

При цьому до структури відносять приватні функції окремих підсистем. Такі моделі краще виражають сутність біологічних систем, але складні для обчислень.

Складання моделей виробляється за визначеною схемою. Спочатку формулюється мета моделювання, потім висловлюється гіпотеза, що представляє якісний опис системи, вибираються тип моделі і математичні методи її опису в залежності від мети і роду інформації. Заключний етап складається в створенні моделі і порівнянні її із системою-об'єктом з метою ідентифікації.

Структурне моделювання зорової системи

Зоровий аналізатор являє собою складну функціональну систему, що містить багато рівнів для переробки зорової інформації, якість роботи якої багато в чому визначається особливостями її будівлі і характером розв'язуваних задач.

Функціональна система по П.К. Анохіну – це центрально-периферичне замкнуте утворення з безупинним зворотним зв'язком (зворотної аферентації), що працює за принципом саморегуляції. У неї можуть входити як близько, так і далеко розташовані друг від друга анатомо-фізіологічні компоненти, зв'язані з виконанням якоїсь визначеної функції і досягненням пристосувального ефекту за рахунок залучення в реакцію різних структур.

Зоровий акт сприйняття носить системний характер, включає ряд операцій, що забезпечуються різними механізмами, локалізованими як у специфічній сенсорній системі, так і за її межами. У процесі сприйняття здійснюється прийом і виділення окремих ознак сигналу, порівняння їх між собою і з наявними внутрішніми еталонами, створення адекватних гіпотез про характер стимулу і віднесення його до окремої категорії (упізнання).

Сприйняття об'єктів зоровою системою в нормі здійснюється за допомогою двох очей, на сітківці кожного з якого формується зображення. Якщо система «справна» і функціонує нормально, то ці зображення при подальшій їхній обробці накладаються один на одного і зливаються в єдиний зоровий образ, що локалізується у визначеній крапці простору.

Технічно зоровий аналізатор може бути реалізований як пристрій з автоматичною системою спостереження, що самофокусується й автоматично підбудовується до різної інтенсивності світла, що має самоочисні лінзи і приєднане до комп'ютеру з настільки розвитими можливостями рівнобіжної обробки інформації, що аналогів у реально існуючій апаратурі не має. Ця система вирішує задачу не тільки одержання чітких зображень реального світу, але і перетворить і осмислює зорову сцену, витягаючи всю корисну інформацію і відкидаючи зайву.

Ніякий людський винахід, включаючи керовані комп'ютером камери, не може суперничати з людськими очима.

Зоровий аналізатор може бути представлений у виді спрощеної структурної блок-схеми. У ньому можна виділити два відділи – периферичний і центральний. До периферичного відділу відносяться блок наведення і фокусування, блок прийому і первинного аналізу і частково передавальні шляхи. До центрального відділу також частково відносяться передавальні шляхи і блок керування й аналізу. Такий поділ системи на два відділи обумовлено особливостями її функціонування.

Периферичний відділ забезпечує прийом, первинну переробку і передачу зорової інформації в центральний відділ. У центральному відділі відбувається остаточна переробка й усвідомлення інформації, формуються керуючі сигнали в різні блоки периферичного відділу з метою поліпшення його функціонування за рахунок «підстроювання» активних елементів. Передавальні шляхи ми віднесли до обох відділів, що обумовлено їхньою структурною організацією. Вони починаються на сітківці і закінчуються в корі потиличної частки мозку, тобто пронизують обидва відділи зорової системи.

На схемі (рис. 1) представлений зоровий шлях, що починається на сітківці і закінчується в корі головного мозку, тобто об'єднуючий між собою три блоки (блок прийому і первинного аналізу, що передають шляхи і блок керування й аналізу). Кожний із блоків зорової системи має свою структурну організацію і системну функцію. Розглянемо кожний із блоків зорової системи.

I. Блок наведення і фокусування. Цей блок забезпечує одержання зорової інформації на сітківці. Він включає окорушивні м'яза, що забезпечують необхідні для одержання зорової інформації повороти ока; акомодаційний апарат, що фокусує зображення об'єкта на сітківці; зіниця, що є діафрагмою, що регулює кількість світлової енергії, що надходить на сітківку; оптичні середовища ока (роговиця, камерна волога, склоподібне тіло), що забезпечують фокусування зображення і безперешкодне проходження світла.

II. Блок прийому і первинного аналізу. Цей блок забезпечує прийом світлового сигналу, його первинну обробку за рахунок виділення контуру зображення і перетворення світлової енергії в електричний сигнал. Структурно II блок реалізований у виді сітківки.

III. Передавальні шляхи. Цей блок забезпечує передачу зорової інформації від первинного аналізатора в блок керування. Структурно III блок реалізований у виді периферичного і центрального нейронів.

IV. Блок керування й аналізу. Здійснює переробку й аналіз зорової інформації, що надходить, формує керуючі сигнали зворотного зв'язку, що регулюють функції елементів зорової системи (наприклад, кривизну хрусталика, напругу окорушивних м'язів, діаметр зіниці). Структурно IV блок зорової системи реалізований у виді підкіркових і коркових зорових центрів.

Основна відповідальність за одержання якісної зорової інформації лежить на першому блоці зорової системи, що складається як з активних (окорушивних м'язів, циліарного м'яза і м'язи сфінктера зіниці), так і аапасивних елементів (роговиця, камерна волога, склоподібне тіло). Пасивна частина оптичних середовищ ока в процесі виконання зорової роботи практично не змінюється і не може корегуватися блоком керування.

Роговиця і хрусталик разом утворять еквівалент лінзи фотоапарата. Приблизно дві третини загального переломлення світла, необхідного для фокусування, відбувається на границі повітря – роговиця, де світло входить в око. Третину, що залишилася, фокусуючої здатності реалізує хрусталик, але його головна задача – забезпечити необхідне регулювання для фокусування системи на об'єктах, розташованих на різних відстанях від ока. В оці, на відміну від фотоапарата, відбувається зміна не відстані від лінзи до фотосприймаючої поверхні, а форми самої лінзи – хрусталика, за рахунок чого змінюються його оптична сила і фокусна відстань. Для розглядання близьких об'єктів хрусталик, за допомогою прикріплених до нього сухожиль, робиться більш опуклим, а для вилучених – більш плоским. Ці зміни форми здійснює сукупність радіальних м'язів, називаних циліарними. Таким чином, хрусталик, будучи активним елементом оптичної системи ока, регулюється блоком керування. Змінюючи свою кривизну, він забезпечує одержання чіткого зображення на первинному аналізаторі (сітківці). Рефлекс, що приводить до скорочення циліарних м'язів і що робить хрусталик більш опуклим, визначається блоком керування і тісно зв'язаний з рефлексом, що контролює відповідні повороти очей.

Дві сукупності м'язових волокон (радіальні і кільцеві) змінюють діаметр зіниці й у такий спосіб регулюють кількість світла, що надходить в око. Цей процес також контролюється блоком керування і зв'язаний функціональним зв'язком із процесами акомодації і конвергенції.

Кожне око встановлюється в очниці у визначене положення шістьма екстраокулярними м'язами, що розбиваються на три пари, причому м'яза кожної пари працюють у противофазі, забезпечуючи рух очей у трьох ортогональних площинах. Для обох очей задача спостереження за об'єктом повинна виконуватися з точністю до декількох кутових хвилин, інакше видиме зображення буде двоїтися. Настільки точні рухи вимагають для своєї реалізації набір тонко набудованих рефлексів, включаючи ті, котрі контролюють положення голови.

Зі складного сполучення дії окремих м'язів обох очей складаються їх спільні координовані рухи (вольові і рефлекторні), що керуються і контролюються блоком керування.