Смекни!
smekni.com

Механизмы проникновения вирусов в клетку. Биохимические и цитофизиологические аспекты (стр. 4 из 5)

Исследование структур и функций белков слияния позволило разделить их на два класса по радиально отличающейся архитектонике. Конформационные изменения эктодоменов этих белков обеспечивают процесс слияния с мембраной клетки. Предполагается, что расширенный трехнитевой стержень белков является α-спиральным и имеет сходство с общей структурой и функциями эктодоменов белков слияния различных вирусов, имеющих суперкапсид. Таким образом, отмечаются общие черты процесса слияния вирусной оболочки с плазмалеммой при проникновении различных вирусов этой группы в клетки. В этом случае при активации стабильный белок слияния пространственно изменяется и приобретает стержневидную форму, подобную "шпильке", которая внедряется в определенный участок клеточной мембраны. Затем обратная сторона белка слияния складывается на начало, тем самым, заключая белок слияния и трансмембранную область в себя, что приводит к близкому контакту вирусной оболочки и мембраны. В этом процессе в основном участвуют липиды плазмалеммы. В дальнейшем, происходит образование локальной полусферы с последующим открытием и увеличением поры в клеточной мембране для передачи вирусных компонентов.

Недавние исследования показали, что при последней стадии слияния суперкапсида вирусов с плазмалеммой, т.е. при формировании и увеличении поры слияния, необходимы определенные клеточные трансмембранные области минимальной длины. При этом не определена временная зависимость процесса формирования поры слияния от точной последовательности химической структуры подобной трансмембранной области, но есть необходимость в ее определенных функциональных свойствах. Такие липидные участки плазмалеммы, используемые вирусами как платформы для входа, обеспечены локализованной концентрацией рецепторов и/или сопутствующими им корецепторными комплексами, а также другими компонентами клетки, которые модулируют процесс входа. Эти участки имеют определенное значение для завершения процесса слияния суперкапсида вируса с плазмалеммой, особенно физические свойства липидов, составляющие участок контакта с оболочкой вируса. При этом также имеет определенное значение структурный состав вирусного суперкапсида. Так, в случае, если в нем преобладают липиды, для входа вируса отпадает необходимость в трансмембранных участках плазмалеммы. Указываются некоторые исключения, когда при проникновении вируса в клетки при функционировании вирусных белков слияния не используются его внутренние домены.

Исследования последних лет установили, что при конформационных изменениях вирусных белков слияния используется энергия клетки-хозяина, и эти белки внедряются в нестабильные области липидного бислоя мембраны. При этом, объединяется проксимальный монослой липидов, окружающий измененный стержень белка при формировании полусферы слияния. Это впоследствии генерирует формирование липидной поры, завершая тем самым процесс слияния оболочки вируса и плазмалеммы. Представляют интерес последние исследования недавно открытых специфических микродоменов в биологических мембранах, которые названы "плотами" (raft). Название подобных микродоменов определяется их свойством перемещаться, как бы плавая, в мозаичном липидном слое мембран.

На моделях биологических мембран показано, что в присутствии холестерола сфинголипиды формируют микродомены - "плоты" - путем организации из дизорганизованной жидкостной фазы мембраны (Lc) в жестко-жидкостное кристаллическое состояние (Lo). Свойство этих микродоменов мобильно перемещаться в мембране определяет их функции в клетках. Так, они способны перемещать специфические белки от внутренних клеточных мембран к внешним и наоборот, от аппарата Гольджи к поверхности клеток, а также принимать участие в эндоцитозе. Эти функции определяют значение микродоменов в этапах жизненного цикла вируса в клетке-хозяине, таких как его входе, сборке новообразованных вирусных частиц и их перемещении к поверхности клетки.

Доказано участие "плотов" клеточной мембраны в процессе проникновения группы вирусов, имеющих суперкапсид. Так, выявлено присутствие вирусных гликопротеинов в этих структурах и обнаружено взаимодействие их с липидными компонентами "плота", а удаление холестерола ингибировало вирусное проникновение. Установлено, что гликопротеины некоторых вирусов, включая вирус гриппа, вирус иммунодефицита человека, вирус Эбола и другие, способны ассоциироваться с "плотами" клеточной мембраны. Также филовирусы Эбола и Марбурга проникают в клетки путем кавеолин-опосредованного эндоцитоза, при котором белок кавеолин связан с микродоменами плазмалеммы. Механизм проникновения вирусов путем эндоцитоза, независимого от клатрина и кавеолина и опосредованного липидными площадками плазмалеммы - "плотами", главным образом, осуществляется в клетках неспособных к синтезу этих белков. Этот путь используют некоторые пикорнавирусы, вирусы папилломы, филовирусы и ретровирусы (таблица). На примере ретровирусов было показано, что при этом механизме связывание трансмембранных рецепторов с белками вирусной оболочки приводит к быстрому формированию выемок на поверхности плазмалеммы, которые затем преобразуются в везикулы.

Необходимо отметить особенное значение рН участка, окружающего пору слияния вирусной оболочки с плазмалеммой. Так, активация белков слияния вирусов иммунодефицита человека и Эбола происходит при нейтральном значении рН. Конформационные изменения белков слияния других вирусов могут инициироваться кислым значением рН, и в этом случае вирусные частицы подвергаются эндоцитозу до начала процесса слияния с плазмалеммой. К таким вирусам относятся альфавирус леса Семлики, вирус Синдбис и другие.

Большинство "неодетых" вирусов без суперкапсида присоединяются к рецепторам и интернализируются в цитоплазму клеток посредством эндоцитоза. Механизмы проникновения этих вирусов мало изучены. Тем не менее, недавние исследования с помощью высокоразрешающей криоиммунной электронной микроскопии показали, что полиовирус, связываясь с рецепторами плазмалеммы, пространственно трансформируется из структуры 160S в 135S. Подобная пространственная конформация позволяет белкам нуклеокапсида взаимодействовать с мембраной клетки для формирования поры. Затем дополнительные конформационные изменения вирусной частицы сопутствуют проникновению ее геномной РНК в цитоплазму клетки, и на поверхности плазмалеммы остается опустошенная частица 80S. При этом структурно-измененная 135S полиовирусная частица интернализируется в цитоплазму клетки путем эндоцитоза, независимого от клатрина и кавеолина, с использованием актина и тирозина. Реализация геномной вирусной РНК происходит только после ее выхода из эндосомы, которая ограничена мембраной клетки и имеет размер 100-200 нм. Пустой капсид 80S транспортируется микротрубочками в цитоплазму клетки. Для проникновения "неодетых" вирусов некоторых семейств, включая пикорнавирусы, не требуется низкое значение рН. Также отмечается участие липидных площадок плазмалеммы - "плотов", о которых упоминалось выше, в процессе проникновения "неодетых" вирусов. Так, показано, что инфицирование клеток многими пикорнавирусами, а именно, вирусом ЕСНО11, энтеровирусом 70, вирусами Коксаки В и А21, зависит от холестерола и актина цитоскелета клетки-хозяина. Подобный механизм проникновения обнаружен и для вирусов семейства Папова.