При соблюдении технологии изготовления зубных протезов из пластмассы ее суммарную усадку удается уменьшить до небольших величин (0,3-0,5%). Полимеризационная усадка пластмассового теста компенсируется заметным расширением ее вследствие высокого коэффициента термического расширения. Компенсация усадки частично происходит при пользовании зубными протезами в связи с водопоглощением пластмассы и связанным с ним увеличением объема до 0,5%.
В результате нарушений режима полимеризации в структуре пластмасс могут образоваться дефекты: пористость (газовая, от отсутствия сжатия, гранулярная), внутренние напряжения, трещины.
О причинах, вызывающих газовую пористость, мы уже говорили выше. Напомним лишь, что она возникает в толще массы и обусловлена испарением мономера внутри полимеризующейся формовочной массы. Это бывает при нарушениях режима полимеризации, например, при опускании кюветы с пластмассовым тестом в гипсовой форме в кипящую воду. Данный вид пористости может также возникать при нагревании формы с большим количеством массы вследствие сложности отвода из нее излишка тепла, развивающегося в результате экзотермичности процесса полимеризации.
Пористость сжатия возникает при недостаточном давлении при формовке масс, вследствие чего отдельные части формы не заполняются формовочной массой и образуются пустоты. Обычно этот вид пористости наблюдается в концевых, истонченных частях конструкции.
Гранулярная пористость выглядит в виде меловых полос или пятен. Она возникает как результат недостатка мономера. Наиболее часто мономер улетучивается из открытого сосуда, где созревает пластмассовое тесто, или при контрольном раскрытии кюветы и длительном нахождении ее в таком состоянии. Обладая большой испаряемостью, мономер легко улетучивается с поверхности, вследствие чего гранулы полимера оказываются недостаточно связанными, рыхлыми. Поверхность открытой массы высыхает, приобретает матовый оттенок. Формовка такой массой приводит к появлению меловых полос или пятен, а гранулярная пористость резко ухудшает физико-химические свойства пластмассы.
Внутренние напряжения в пластмассе при полимеризации возникают в тех случаях, когда охлаждение и отвердение ее происходит неравномерно в разных частях.
В пластмассовых изделиях всегда имеются значительные внутренние остаточные напряжения, что приводит к растрескиванию и короблению. Они появляются в местах соприкосновения пластмассы с инородными материалами (фарфоровыми зубами, крампонами, металлическим каркасом, отростками кламмеров). В данном случае эти явления есть результат различных коэффициентов линейного и объемного расширения пластмасс, фарфора, сплавов металлов.
В местах перехода массивных участков пластмассового изделия в тонкие также возникают остаточные напряжения. Дело в том, что в толстых участках усадка пластмассы имеет большую величину, чем в тонких.
Кроме того, резкие перепады температуры при полимеризации вызывают или усиливают упругие деформации. Это, в частности, вызвано опережением затвердевания наружного слоя изделия. Затем отвердение внутренних слоев вызывает уменьшение их объема и они оказываются под воздействием растягивающих напряжений, поскольку наружные слои при этом уже приобрели жесткость.
Нарушение процессов полимеризации приводит также к тому, что мономер полностью не вступает в реакцию и часть его остается в свободном (остаточном) состоянии. Полимеризат всегда содержит остаточный мономер. Часть оставшегося в пластмассе мономера связана силами Ван-дер-Ваальса с макромолекулами (связанный мономер), а другая часть находится в свободном состоянии (свободный мономер). Последний, перемещаясь к поверхности протеза (аппарата), выходит в ротовую жидкость и растворяется в ней. Он вызывает воспаление слизистой оболочки полости рта, различные аллергические реакции организма. Базисные пластмассы при правильном режиме полимеризации содержат 0,5%; быстротвердеющие — 3,5% остаточного мономера.
Известно, что при взаимодействии высокомолекулярных веществ с окружающей средой, в которой они находятся, под влиянием целенапр, воздействия на них различных факторов происходят изменения, как в составе, так и в структуре строения этих веществ, что влечет за собой соответствующие изменения их свойств.
Санитарно-гигиеническая характеристика полимерных материалов представляет собой комплекс показателей определяющих потенциальную опасность для здоровья человека и их соответствие гигиеническим требованиям, предъявляемым к материалам или изделиям конкретного назначения.
Испытания полимерных материалов на их соответствие санитарно-гигиеническим требованиям включают в себя:
· санитарно-химические исследования - идентификацию и определение концентрации веществ, мигрирующих из материала в контактирующие с ним среды;
· токсикологические исследования - выявление возможного токсического действия материала или содержащихся в нем химических агентов на организм (данные этих исследований обязательны для санитарно-гигиенических характеристик объектов любого назначения).
В зависимости от сферы применения и предполагаемых условий эксплуатации материалов и изделий существенное значение в их санитарно-гигиенических характеристиках могут иметь и другие показатели:
· органолептические, например: запах и привкус материала или контактирующих с ним сред;
· физико-гигиенические, например: коэффициент теплопроводности, который в гигиенической практике принято называть коэффициентом тепло усвоения, водо- и паропроницаемость материала, его электризуемость;
· микробиологические, например: влияние материала на развитие микроорганизмов.
Загрязнение среды контактирующей с поверхностью полимерного материала может неблагоприятно воздействовать на организм.
Из материала мигрируют содержащиеся в нем низкомолекулярные соединения - остаточные мономеры, растворители, катализаторы, пластификаторы, стабилизаторы, а также продукты деструкции и гидролиза, образовавшиеся при переработке полимера в изделие и при эксплуатации последнего в условиях действия высокой температуры, радиации, механических нагрузок и других. Таким образом, сама контактирующая с полимером среда и условия эксплуатации могут вызывать реакции, приводящие к образованию низкомолекулярных мигрирующих соединений. В этом контакте миграция имеет сложный многостадийный процесс, продолжительность которого может составлять от нескольких часов до многих месяцев, а иногда и лет.
Скорость движения мигрирующих веществ го материала к границе его раздела со средой определяется скоростью диффузии этих веществ в материале, зависящей от степени родства диффундирующего вещества и полимера и от степени кристалличности последнего. Данный процесс может существенно осложняться вследствие встречной диффузии среды внутрь материала. При этом сложность санитарно-химических исследований связана с тем, что перед их началом не всегда известен состав мигрирующих токсичных соединений и, кроме того, в некоторых случаях отсутствуют чувствительные и селективные методы их определения.
Рекомендуют санитарно-химические исследования проводить в условиях максимально приближенных к эксплуатационным (температура, отношение поверхности материала или его массы к объему или к массе контактирующей среды, продолжительность контакта, состав среды и др.). Действие мигрирующих соединений зависит в большинстве случаев от того, в каком количестве они попадают в организм, а также от времени их воздействия.
Полученные в санитарно-химических экспериментах значения концентраций токсичных соединений сравнивают с их предельно допустимой концентрацией (ПДК), установленной в специальных токсикологических экспериментах и зависящей от условий использования материала. Такое сравнение может дать лишь предварительную оценку применимости материала для тех или иных целей. Окончательное же решение о возможности его использования в конкретных условиях эксплуатации принимается только после токсикологических исследований.
В то же время в отечественной и зарубежной практике параметры проведения санитарно-химических экспериментов регламентируются весьма условно, без учета многообразия факторов, влияющих на миграцию токсичных соединений. Это приводит к плохой воспроизводимости результатов, а в ряде случаев и к неправильным выводам о гигиенических свойствах материалов.
Так, данные, полученные в статистических экспериментах, нельзя применить к условиям динамического режима контакта среды с исследуемым материалом. Отсутствие корректных кинетических исследований не позволяет прогнозировать гигиенические свойства полимеров расчетным путем с использованием таких величин, как константы скорости и энергии активации реакции, коэффициент диффузии. В связи с этим, для каждого конкретного случая эксплуатации материала требуется проведение длительных и трудоемких экспериментов.
Решение проблемы прогнозирования санитарно-гигиенических характеристик полимерных материалов связано с изучением закономерностей миграции низкомолекулярных соединений из материала в контактирующую с ним среду селективными и высокочувствительными методами. Исследование кинетики и выяснение механизма миграции позволят подойти к санитарно-гигиеническим характеристикам полимерных материалов с привлечением строгих количеств венных соотношений.
Токсикологические свойства полимерных материалов обусловлены главным образом свойствами мигрирующих из них низкомолекулярных соединений. При токсикологическом определении меры опасности того или иного полимерного материала используют общепринятые в гигиенической науке критерии вредности химических веществ: понятие «пороговое» действия яда, ПДК и другие. Исключением является токсикологическая оценка полимеров медицинского назначения, которые интимно и длительно контактируют с организмом (зубные протезы, материалы, предназначенные для внутреннего протезирования или склеивания тканей) или обладают фармакологической активностью. По мнению специалистов, оценка пригодности этих материалов осуществляется обычно по жизненно важным показателям, поэтому для их токсикологической характеристики должны быть использованы не общегигиенические критерии вредности, а «критерии биосовместимости» материалов с организмом.