За последние несколько лет стало более или менее ясно, что болезнь Паркинсона развивается в результате нарушений в работе шаперонной и убиквитин-протеасомной систем. По-видимому, дело обстоит следующим образом. Какое-то повреждение в нейронах черной субстанции запускает целый каскад реакций, приводящих к появлению большого количества неправильно упакованных белков. Они образуют кластеры, что вначале даже дает некоторые преимущества клетке, поскольку аномальные белки держатся вместе, а не распространяются по ней, вызывая повреждения. Затем в дело вступают шапероны, приводящие белки в норму, а те из них, которые исправить не удается, расщепляются убиквитин-протеасомной системой. Когда аномальных белков становится слишком много, клеточная "очистительная машина" перестает справляться с работой, шаперонов не хватает, токсичные белки накапливаются, и в конце концов нейроны погибают. Эта гипотеза хороша тем, что, по мнению ученых, объясняет природу обеих форм болезни Паркинсона. Предполагается, что 95% больных страдают вторичным паркинсонизмом, возникающим в результате сложных взаимодействий между генетическими и средовыми факторами. Если человек с предрасположенностью к паркинсонизму попадает в неблагоприятные условия (например, длительное время находится в контакте с пестицидами), то нейроны черной субстанции страдают у него в большей степени, чем нейроны людей, не имеющих предрасположенности, и в них накапливается больше белков с аномальной конформацией. У 5% остальных больных паркинсонизмом в основе патологии лежат чисто генетические факторы (первичный паркинсонизм). Результаты исследований, проведенных за последние восемь лет, указывают на наличие связи между мутациями в геноме больных и образованием белков с аномальной конформацией или сбоем в работе защитных механизмов клетки. Это наиболее впечатляющее достижение в изучении природы болезни Паркинсона за многие годы.
В 1997 г. Михаэль Полимеропулос (Mihael H. Polymeropoulos) из Национальных институтов здоровья идентифицировал мутацию в гене, кодирующем белок под названием альфа-синуклеин, у членов итальянских и греческих семей, страдавших наследственной формой паркинсонизма.
Мутация наследовалась по аутосомно-доминантному типу, т.е. для возникновения болезни было достаточно одной мутантной копии гена (полученной от отца или матери). Мутация в гене альфа- синуклеина встречается крайне редко: доля несущих ее больных составляет лишь 1% от числа всех страдающих паркинсонизмом. Но сам факт обнаружения связи между наличием мутантного белка и болезнью Паркинсона вызвал большой интерес в научных кругах. Отчасти это было связано с тем, что в том же году выяснилось, что альфа-синуклеин (не важно, мутантный или нормальный) относится к категории белков, способных к образованию кластеров. Отсюда напрашивается вывод: разобравшись, каким образом мутация приводит к паркинсонизму, можно раскрыть тайну образования телец Леви в дофаминпродуцирующих клетках черной субстанции при болезни Паркинсона.
В 1998 г. японские ученые Есикуни Мицуно (Yoshikuni Mizuno) из Университета Джунтендо и Нобуёси Шимицу (Nobuyoshi Shimizu) из Университета Кейо идентифицировали еще один ген - он кодирует белок паркин, мутация в котором приводит к наследственному паркинсонизму, но другого типа. Такая мутация обычно встречается у людей, заболевших в возрасте до 40 лет, и чем моложе пациент, тем выше вероятность, что в основе заболевания лежит мутация в гене паркина. Те, кто получают мутантные копии гена и от отца, и от матери, обязательно заболевают, но к группе риска относятся и люди, несущие лишь одну копию мутантного гена. Мутации в гене паркина встречаются чаще, чем в гене альфа-синуклеина, однако точные цифры неизвестны.
В молекуле паркина имеются несколько доменов, характерных и для многих других белков. Особый интерес представляют так называемые RING-домены; содержащие их белки участвуют в расщеплении других белков. Имеющиеся на сегодня данные позволяют предположить, что гибель нейронов при данной форме паркинсонизма происходит, в частности, вследствие нарушения убиквитинилирования - составного компонента системы удаления аномальных белков. В норме паркин присоединяет убиквитин к неправильно упакованным белкам, без этого белок не получает "черную метку" и не разрушается. Недавно обнаружили, что белок под названием BAG5, присутствующий в тельцах Леви, может связываться с паркином и блокировать его работу, результатом чего служит гибель дофаминергических нейронов.
Интересно, что у некоторых больных, несущих мутацию в гене паркина, в нейронах черной субстанции отсутствуют тельца Леви. Это означает, что, пока происходит убиквитинилирование, белковые агрегаты не образуются. А отсюда, в свою очередь, следует, что, когда аномальные белки не держатся вместе, а распределяются по всей клетке, возникает хаос. Поскольку у людей с мутацией в гене паркина паркинсонизм развивается в молодом возрасте, можно предположить, что у них отсутствует защитный механизм, обеспечивающий кластеризацию токсичных белков.
В последнее время появились сообщения об идентификации целого ряда других генов, имеющих отношение к паркинсонизму. Так, в 2002 г. Винченцо Бонифати (Vincenzo Bonifati) из Медицинского центра Эразма в Роттердаме обнаружил мутацию в гене DJ-1 у членов нескольких голландских и итальянских семей. Как и мутация в гене паркина, она отвечает за возникновение аутосомно-рецессивной формы болезни Паркинсона. Выявлена также мутация в гене UCHL1 у больных, страдающих наследственной формой паркинсонизма. А недавно в журнале Science опубликована статья о мутации в гене PINK-1, следствием которой может стать нарушение метаболических процессов и гибель нейронов черной субстанции. Сообщается об идентификации еще одного гена подобного типа, LRRK2, или дардарина (что на языке басков, у которых этот ген обнаружен, означает "тремор"). К сожалению, вся цепочка событий от возникновения мутации до развития заболевания учеными пока не воссоздана.
1. Т.Т. Березов, Б.Ф. Коровкин «Биологическая химия», 1990 г.
2. Цыганенко, Жуков, Мясоедов, Завгородный - Клиническая биохимия, 2001
3. Коневалова Н.Ю., Фомченко Г.Н. и др. «Биохимия», 2009 г.
4. Ленинджер А. «Основы биохимии», 1985 г.
5. Николаев А.Я. «Биологическая химия», 1989. г.
6. Мюррей Р. И др. «Биохимия человека», 1993 г.