где φ – коэффициент скорости;
Нпр – приведенный напор.
Приведенный напор зависит от перепада давлений на свободной поверхности жидкости и в среде, в которую происходит истечение,
где Н – геометрический напор над центром тяжести отверстия или насадка;
р0, рср – давление соответственно на свободной поверхности жидкости и в среде, в которую происходит истечение.
При истечении жидкости из открытых резервуаров в атмосферу Нпр=Н.
Расход жидкости при истечении через отверстия и насадки
где μ – коэффициент расхода.
Определим скорость струи в сжатом сечении и расход для двух случаев:
а) резервуар заполнен полностью.
Нпр=Н=D.
Для цилиндрического внутреннего насадка φ=0,71, μ=0,71.
б) резервуар заполнен до половины.
Нпр=Н=D/2
При истечении жидкости при переменном напоре часто требуется определить время для наполнения или опорожнения резервуара.
В общем случае, когда резервуар имеет произвольные очертания, время опорожнения t части резервуара может быть определено методами численного интегрирования выражения
где Ω – площадь горизонтального сечения резервуара;
dh – изменение уровня жидкости в резервуаре за бесконечно малый промежуток времени dt;
h – текущее значение уровня жидкости в резервуаре;
H1, H2 – уровень жидкости в резервуаре соответственно в начальный и конечный моменты времени;
Qп – расход жидкости, поступающий в резервуар.
В случаях сосудов шарообразной формы при отсутствии притока (Qп=0) интеграл имеет решение:
где tп – время полного опорожнения, а tч – время частичного опорожнения.
Время полного опорожнения:
Время опорожнения верхней половины:
Время опорожнения нижней половины:
4. Гидравлические струи. Силовое воздействие струи на преграду
Рассчитать параметры свободной затопленной струи жидкости в четырех сечениях: при x’=0 (начальное сечение), x’=xн (переходное сечение), x’=2xн, x’=4xн. Параметры определить для двух типов струи: плоской и круглой. Для плоской струи половина высоты отверстия b0, а его ширина l0=20b0. Для круглой струи радиус отверстия r0. Построить эпюры распределения скоростей в струе жидкости для указанных сечений.
Определить силовое воздействие круглой струи на плоскую твердую границу породы пласта для 2-х случаев: струя вытекает из отверстия долота перпендикулярно и под углом a к породе. Найти силу давления струи на породу в направлении действия струи и нормальную силу давления. Как изменятся силы, если к отверстию присоединить насадки: цилиндрический внешний и коноидальный
Схема движения свободной затопленной турбулентной струи
Основные расчетные зависимости для круглых и плоских свободных затопленных турбулентных струй
Параметр | Круглая струя | Плоская струя |
Коэффициент турбулентной структуры a | 0,08 | 0,09-0,12 |
Половина угла расширения b | 3,4a | 2,4a |
Расстояние от полюса до начального сечения x0 | ||
Длина начального участка xн | ||
Радиус R или полутолщина B струи | ||
Скорость на оси основного участка струи umax | ||
Расход на основном участке Q |
Скорость в начальном сечении u0 определим по формуле
Приведенный напор зависит от перепада давлений на свободной поверхности жидкости и в среде, в которую происходит истечение,
d=r/rв => r=d*rв с учетом этой формулы
С учетом исходных данных найдем
Формула для определения расхода струи в начальном сечении
2 = 0,62*10-3 м2 (для круглой струи) (для плоской струи) (для круглой струи) (для плоской струи)Коэффициент турбулентной структуры a: для круглой струи равен 0,08; для плоской принимаем 0,1.
Половина угла расширения b: для круглой струи 3,4*a=3,4*0,08=0,272; для плоской 2,4*а=2,4*0,1=0,24.
Расстояние от полюса до начального сечения x0: для круглой струи 0,29*r0/a=0,29*14/0,08=50,75 мм; для плоской струи 0,41*b0/a=0,41*14/0,1=57,4 мм.
Длина начального участка xн: для круглой струи 0,67*r0/a=0,67*14/0,08=117,25 мм; для плоской струи 1,03*b0/a=1,03*14/0,1=144,2 мм.
Расчетные значения радиуса r или полутолщины струи B, скорости на оси основного участка струи umax, расхода на основном участке Q представлены в таблице 2.
Сечения | Плоская струя | Круглая струя | ||||
B м | umax, м/с | Q*10-3, м3/с | R м | umax, м/с | Q*10-3, м3/с | |
Переходное сечение X'=Xн | 0,04 | 14,46 | 104,4 | 0,03 | 14,46 | 12,04 |
X'=2Xн | 0,07 | 11,04 | 136,73 | 0,06 | 8,52 | 20,44 |
X'=4Xн | 0,12 | 8,15 | 185,17 | 0,10 | 4,67 | 37,24 |
Поперечные профили распределения скоростей в сечениях струи рассчитывают по формуле u=umax(1 - h1,5)2. Радиус R или полутолщину струи В разбивают на отрезки через 0,2h. Результаты расчетов представлены в таблицах №3 и №4.
Таблица № 3
Сечения | Параметры плоской струи | Относительное расстояние от рассматриваемой точки до оси струи | |||||
0 | 0,2 | 0,4 | 0,6 | 0,8 | 1 | ||
Переходное сечение | Скорость струи в точке u, м/с | 14,46 | 11,99 | 8,07 | 4,14 | 1,17 | 0,00 |
Абсолютное расстояние от точки до оси струи B, м | 0 | 0,008 | 0,016 | 0,024 | 0,032 | 0,04 | |
x’=2xн | Скорость струи в точке u, м/с | 11,04 | 9,15 | 6,16 | 3,16 | 0,89 | 0,00 |
Абсолютное расстояние от точки до оси струи B, м | 0 | 0,014 | 0,028 | 0,042 | 0,056 | 0,07 | |
x’=4xн | Скорость струи в точке u, м/с | 8,15 | 6,76 | 4,55 | 2,33 | 0,66 | 0,00 |
Абсолютное расстояние от точки до оси струи B, м | 0 | 0,024 | 0,048 | 0,072 | 0,096 | 0,12 |
Таблица №4
Сечения | Параметры круглой струи | Относительное расстояние от рассматриваемой точки до оси струи | |||||
0 | 0,2 | 0,4 | 0,6 | 0,8 | 1 | ||
Переходное сечение | Скорость струи в точке u, м/с | 14,46 | 11,99 | 8,07 | 4,14 | 1,17 | 0,00 |
Абсолютное расстояние от точки до оси струи B, м | 0 | 0,006 | 0,012 | 0,018 | 0,024 | 0,03 | |
x’=2xн | Скорость струи в точке u, м/с | 8,52 | 7,06 | 4,75 | 2,44 | 0,69 | 0,00 |
Абсолютное расстояние от точки до оси струи B, м | 0 | 0,012 | 0,024 | 0,036 | 0,048 | 0,06 | |
x’=4xн | Скорость струи в точке u, м/с | 4,67 | 3,87 | 2,61 | 1,34 | 0,38 | 0,00 |
Абсолютное расстояние от точки до оси струи B, м | 0 | 0,02 | 0,04 | 0,06 | 0,08 | 0,1 |
Силовое воздействие круглой струи на твердую преграду рассчитывают при тех же исходных данных по формулам: струя вытекает из отверстия перпендикулярно к породе Pкр=kнrw0u02, под углом a к породе Pкр=kнrw0u02sin2a, PN кр=kнrw0u02sina.