Биосинтез ГАГ начинается с синтеза тетрасахаридного линкера, затем происходит полимеризация ГАГ-цепи.
Основные ферменты, участвующие в синтезе тетрасахаридного линкерного района, указаны в таблице 8.
Таблица 8. Основные ферменты синтеза тетрасахаридного линкера протеогликанов
Фермент | Субстрат | |
Ксилозилтрансфераза | XylT | . D/E. SG. D/E |
Галактозилтрансфераза-I | GalT-I | Xyl-Ser |
Галактозилтрансфераза-II | GalT-II | Gal-Xyl-Ser |
Глюкуронилтрансфераза-I | GlcAT-I | Gal-Gal-Xyl-Ser |
Синтез тетрасахаридного линкерного района начинается в ЭПР с переноса ферментом О-ксилозилтрансферазой (XylT) остатка ксилозы от UDP-ксилозы на остаток серина корового белка [15]. Последующее добавление двух остатков галактозы, производимое двумя различными галактозилтрансферазами (GalТ-Iи GalТ-II), происходит в начальных/cредних отделах аппарата Гольджи. Донором остатков галактозы выступает UDP-галактоза. Одна гликозилтрансфераза образует β-1,3-, а другая - β-1,4-гликозидную связь [16]. Затем фермент глюкуронилтрансфераза-1 (GlcAT-I) завершает синтез линкерного участка, присоединяя глюкуроновую кислоту [16].
Сразу же после синтеза тетрасахаридный район может быть модифицирован: фосфорилирован по С-2 ксилозы и сульфатирован по остаткам галактозы [2].
Дальнейший синтез заключается в последовательном присоединении гексуроновой кислоты и гексозамина [17].
По завершении синтеза линкерного района путь биосинтеза протеогликанов разветвляется. Возможно 3 альтернативных типа реакций: присоединение β-GalNAc (инициация синтеза ХС), присоединение α-GlcNAc (инициация синтеза ГС) или присоединение α-GalNAc. Эти реакции осуществляются тремя различными трансферазами. Реакция присоединения α-GalNAcк линкерному тетрасахариду нетипична для клетки и приводит к образованию пента - или гептасахарида содержащего один дисахарид ХС, который не встречается в природных протеогликанах.
Вышеупомянутые трансферазы являются важными точками контроля в биосинтезе ПГ, так как они в конечном итоге определяют тип формирующейся ГАГ-цепи [2].
Биосинтез ХС и ДС. ХС состоят из повторяющихся дисахаридных единиц GalNAc-GlcUA, полимеризованных в длинные цепи со средним размером 40 дисахаридов (~20 кДа). На основании такой структуры ХС можно предсказать, по крайней мере, 5 ферментативных активностей, включая 3 трансферазы (инициаторную GalNAcтрансферазу и полимеризующие GalNAcи GlcUAтрансферазы) и 2 сульфотрансферазы (GalNAc4-сульфотрансферазу и GalNAc6-сульфотрансферазу). Дополнительные ферменты осуществляют эпимеризацию GlcUAв IdoUAв ДС, сульфатирование С-2 уроновой кислоты и сульфатирование по другим (редко встречающимся) позициям ХС [18, 19].
После завершения синтеза углеводной цепи ХС происходит ее модификация - эпимеризация D-глюкуроновой кислоты в L-идуроновую, проводимая ферментом D-глюкуронил С5-эпимеразой (С5-EPI) и деацетилирование/сульфатирование, осуществляемое ферментом N-деацетилазой/N-сульфотрансферазой.
Эпимеризация одного или нескольких остатков GlcUAв IdoUAприводит к преобразованию ХС в ДС (рис.6).
Рис.6. Реакция эпимеризации GlcUAв IdoUA
Затем сульфотрансферазы проводят сульфатирование по различным положениям (таблица 9), используя в качестве высокоэнергетического донора сульфатов PAPS (3′-фосфоаденил-5′-фосфосульфат) [20].
Таблица 9. Основные ферменты биосинтеза ХС и ДС
Фермент | Субстрат | |
β - галактозилтрансфераза-I | βGalNAcT-I | GlcA-Gal-Gal-Xyl-Ser |
β - глюкуронозилтрансфераза-II | βGlcAT-II | GalNAcβ1-4GlcA-. |
β - галактозилтрансфераза-II | βGalNAcT-II | GlcAβ1-3GalNAc-. |
D-глюкуронил С5-эпимераза | С5-EPI | -3GalNAcβ1-GlcAb1- |
Хондроитинсульфат-4-сульфотрансфераза | CS4-ST | -3GalNAcβ1-GlcAb1- |
Хондроитинсульфат-6-сульфотрансфераза | CS6-ST | -3GalNAcβ1-GlcAb1- |
Дераматансульфат - 6 - сульфотрансфераза | DS6-ST | -3GalNAcβ1-IdoAa1- |
Дерматансульфат - 2 - сульфотрансферза | DS2-ST | -3GalNAcβ1-IdoAa1- |
Деградация ХС и ДС в клетках животных происходит в лизосомах, где содержится несколько экзогликолитических активностей (рис.7).
Для аналитических целей широко используются бактериальные ферменты деградации ХС и ДС: хондроитиназа АС (хондроитин АС лиаза), ЕС 4.2.2.5, из Flavobacteriumheparinum, хондроитиназа АВС (хондроитин АВС лиаза), ЕС 4.2.2.4, из Proteusvulgaris. Бактериальные хондроитиназы расщепляют цепи ХС и ДС на дисахаридные единицы.
Биосинтез ГС и Ге. Углеводные цепигепарина и гепарансульфатов состоят из повторяющихся дисахаридных единицGlcNAcα1-4GlcUAβ1-4. После завершения полимеризации ГАГ-цепи ГС и Ге подвергаются серии реакций модификации, катализируемых, по крайней мере, четырьмя семействами сульфотрансфераз и одной эпимеразой [21].
Фермент GlcNAcN-деацетилаза/N-сульфотрансфераза отщепляет ацетильную группу от остатков GlcNAcи тут же присоединяет взамен ушедшей группы сульфатную, после чего образуетсяGlcNSO3. Однако некоторые деацетилированные остатки GlcNостаются несульфатированными. Затем эпимераза, схожая с аналогичным ферментом, участвующим в биосинтезе ДС, модифицирует остатки GlcUA, непосредствннно прилежащие к GlcNSO3. После этого происходит 2-O-сульфатирование образовавшейся IdoUA. Далее сульфотрансферазы добавляют сульфатные группы на 6-ОН остатков GlcN, прилежащих к уроновой кислоте. Наконец, сульфатированные остатки сахаров и эпимеры уроновой кислоты подвергаются действию 3-О-сульфотрансферазы.
Перечисленные модификации происходят лишь в определенных кластерах ГАГ-цепи. Таким образом, часть дисахаридных единиц преобразованиям не подвергается. Обычно реакции модификации идут в описанном выше порядке, однако полностью все этапа преобразований происходят не всегда. Это ведет к формированию огромной химической гетерогенности внутри модифицируемых регионов [10, 21].
Определенное расположение сульфатированных остатков и эпимеров уроновой кислоты в ГС и Ге формирует последовательности, с которыми связываются лиганды [10].
Основной вопрос, возникающий в данном случае, - каким образом регулируются ферменты и пути биосинтеза ГС/Ге, приводящие к формированию тканеспецифичных лиганд-связывающих последовательностей.
На данный момент выделены и клонированы практически все ферменты биосинтеза ГС. Обнаружено несколько важных особенностей, которые могут пролить свет на процесс возникновения лиганд-связывающих последовательностей [22].
· Некоторые ферменты имеют по 2 каталитических активности, заключенных в одном белке. Например, белок, несущий 2 каталитических домена, осуществляющих N-деацетилирование остатков GlcNAcи последующее N-сульфатирование. То же верно и для кополимеразы, переносящей GlcNAcи GlcUAс соответствующих UDP - сахаров на растущую цепь полимера. В противоположность этому, эпимераза, 2-О-сульфотрансфераза и 6-О - сульфотрансфераза (зы) являются уникальными активностями независимых белков.
· В ряде случаев существуют множественные изоферменты, катализирующие одну или пару реакций. К примеру, описаночетыре N-деацетилазы/N-сульфотрансферазы, три 6-О-сульфотрансферазы.
Их распределение в тканях различается. Это может служить причиной различий паттернов сульфатирования. Хотя наблюдается и определенное перекрывание, то есть индивидуальные изоферменты могут работать на различных последовательностях в пределах одной цепи.
· Реакции модификации полимерной цепи, вероятно, колокализуются в определенных участках аппарата Гольджи. Ферменты могут формировать супрамолекулярные комплексы, координирующие реакции модификации. Структура этих комплексов может играть роль в регуляции тонкой структуры цепи.
· Структура ГС более значительно различается между разными типами клеток, чем между коровыми белками, экспрессируемыми в одной клетке.
Этот факт свидетельствует о том, что каждый тип клеток может экспрессировать уникальный набор ферментов и регуляторных факторов [10, 22].
Подробно биосинтез ГС и Ге описан вобзоре [10].
Деградация ГС происходит в лизосомах и состоит из нескольких этапов (см. рис.7).
Клетки секретируют протеогликаны в межклнеточное пространство, также часть мембранных ПГ отщепляется от клеточной поверхности протеазами, которые расщепляют коровый белок по опрелеленным сайтам.
В то же время значительные количества ПГ поглощаются клетками путем эндоцитоза (рис.7).
Рис.7. Обмен протеогликанов [23].
После эндоцитоза происходит постепенная деградация ПГ в лизосомах. Поглощенные клеткой ПГ сначала подвергаются действию гепараназ, хондроитиназ, кератназ или гиалуронидаз, расщепляющих ГАГ-цепи по ограниченному числу сайтов. Затем набор экзогликозидаз и сульфатаз завершает деградацию полученных на первой стадии фрагментов [23].
Протеогликаны представляют собой гетерогенный класс макромолекул, отличающихся друг от друга по молекулярному весу, составу, тонкой структуре ГАГ и функциям.
Существующее огромное структурное разнообразие ПГ объясняется несколькими факторами. Во-первых, коровый белок обычно несет несколько ГАГ-акцепторных сайтов, не все из которых одинаково используются. Во-вторых, может варьировать длина ГАГ-цепей. Цепи ГАГ могут также различаться по распределению сульфатированных остатков сахаров [21, 24].
Благодаря высокому отрицательному заряду, наличию сульфатных и ацетильных групп на ГАГ-цепях, реакционных групп коровых белков, ПГ вступают во взаимодействие с различными молекулами (таблица 10).