Смекни!
smekni.com

Усовершенствование метода окраски вкусовых луковиц ионофорезом (стр. 3 из 6)

Аксоны 2-х нейронов по выходе из ядра солитарного пучка идут через ретикулярную формацию на противоположную сторону, входят в состав медиальной петли и оканчиваются, главным образом, на нейронах аркуатного ядра зрительного бугра, в непосредственной близости с центрами соматосенсорной системы лица и ротовой полости. Часть аксонов этого пути заканчивается в сосочковых (мамиллярных) телах. Аксоны 3-х нейронов (главном образом аркуатного ядра) достигают корковых вкусовых центров. По данным Н.А. Ибадова (1985), часть аксонов 1-х нейронов не переключаясь достигает корковых вкусовых центров и даже полушарий и червя мозжечка.

Относительно локализации в коре вкусового центра в литературе приводятся противоречивые данные – в гиппокампе, в парагиппокамповой извилине, в крючке, в нижних отделах пре- и постцентральной извилин, в параинсулярной и оперкулярной (покрышковой) областях (после 43). В последние годы предпочтение отдается последним двум областям. Основанием этому служат экспериментальные исследования с разрушением инсуло-оперкулярной области коры, в результате чего установлена дегенерация вентромедиальных ядер зрительного бугра. В клинических условиях установлено нарушение вкусовой чувствительности у больных после удаления оперкулярной области коры.

Однако не вся вкусовая сенсорная информация передается в корковые центры. Часть ее по выходе из ядра солитарного пучка передается, по видимому, через ретикулярную формацию на пищевой, дыхательной и сосудодвигательный центры, в частности, на ядра блуждающего и языкоглоточного нервов, и обуславливает такие акты, как рвоту, глотание, изменение частоты дыхания и сердцебиений.

Что касается саморегуляции вкусовой сенсорной системы, Ио она несомненно имеется, но механизмы ее почти не выяснены. Вообще, белых пятен в структурно-функциональной организации вкусовой сенсорной системы немало и потому объяснение многих сторон ее деятельности строится на предположениях. Достоверно установлено, что острота вкусовых восприятий зависит от состояния рецепторов желудка. Доказано, что число активно функционирующих вкусовых луковиц у людей в голодном состоянии значительно больше, чем в сытом. Эти данные свидетельствуют о наличии центробежных механизмов регуляции вкусовой сенсорной системы, в том числе регуляции ее периферической части. Однако, как передаются эти влияния на периферическую часть, пока не ясно, так как в составе барабанной струны не обнаружено эфферентных нервных волокон, передающих импульсы на рецепторные вкусовые клетки, а на самих рецепторных клетках не обнаружены эфферентные синапсы. Высказываются предположения, что эфферентные влияния на вкусовые рецепторы осуществляются через симпатическую нервную систему, но передаются непосредственно на вкусовые клетки, а на нервное сплетение под основаниями вкусовых луковиц.

В периферической части обонятельной сенсорной системы имеет место латеральное торможение – при возбуждении одной рецепторной клетки часть других клеток тормозится. Это обусловлено тем, что одно чувствительное волокно, разветвляясь на многочисленные терминали, вступает в синаптические связи с большим числом рецепторных клеток. При возбуждении одной рецепторной клетки в данном нервном окончании возникают нервные импульсы, которые проводятся антидромно по всем разветвлениям этого волокна и блокируют образование импульсов во всех других терминалях. Механизмы латерального торможения более обстоятельно будут рассмотрены при изложении кожной части соматосенсорной системы.

Механизмы центрального торможения во вкусовой сенсорной системе практически не выяснены. В литературе указывается наличие центробежных эфферентных влияний из коры на клетки аркуатного ядра зрительного бугра. Что касается эфферентных влияний на нейроны ядра солитарного пучка, а тем более на чувствительные вкусовые нейроны (в частности узла коленца), то они пока не обнаружены.

Наконец, имеются данные, что некоторые пищевые вещества, например глюкоза, всосавшись в кровь в ротовой полости, буквально за несколько секунд достигают вкусовых центров и оказывают на их клетки определенное влияние, а исходящие из этих центров эфферентные импульсы влияют на промежуточные центры, а возможно и на периферическую часть (через симпатическую нервную систему), изменяя порог чувствительности вкусовых клеток и их адаптации к данному раздражителю.

В заключение следует отметить. Что ощущение вкуса вызывается не только действием четырех основных вкусовых стимулов на вкусовые клетки, но также действием на рецепторы прикосновения, температуры, давления, запаха. Следовательно, целостное ощущение вкуса является результатом совместного функционирования нескольких сенсорных систем вкусовой, экстероцептивной, интероцептивной и обонятельной.


3. Трансдукция вкусового сигнала

Основополагающей функцией вкусовых рецепторных клеток является распознавание вкусовых веществ (ионов и молекул, содержащихся в пище) - трансдукция - и кодирование информации об их концентрации и вкусовой модальности для дальнейшего анализа в соответствующих структурах мозга (Gilbertson et al., 2000; Herness and Chen, 2000). Для трансдукции вкусовых стимулов в настоящий момент общепризнанна множественность механизмов, которые можно разбить на две условные группы. Во-первых, предполагается, что при воздействии солёных и кислых стимулов для образования и передачи сигнала во вкусовой клетке достаточно модуляции ионных потоков через апикальную мембрану, обусловленной изменением ионного состава среды (Na+, в случае солёного; Н*, в случае кислого стимула) во вкусовой поре (Lindemann, 1996; Herness and Gilberson, 1999). Во-вторых, большинство сладких и горьких веществ (а так же ряд аминокислот) активируют хеморецепторный путь передачи сигнала. Предполагается, что в этом случае внешний стимул связываясь с трансмембранным G-белок связывающимся рецептором (GPCR, G-protein coupled receptor) (Lindemann, 2001), переводит его в возбужденное состояние, находясь в котором рецептор катализирует диссоциацию нескольких сотен гетеротримерных G-белков на а-субъединицу и комплекс Ру-субъединиц. Каждый из них может регулировать активность ионных каналов и/или эффекторных ферментов, которые генерируют внутриклеточные сигналы, что в свою очередь приводит к передаче вкусового сигнала далее от вкусовой клетки. (Herness and Gilberson, 1999; Lindemann 2001; Margolskee 2002). Следует отметить, что прогресс последнего десятилетия в области молекулярной биологии, иммуногистохимии и электрофизиологии вкусового органа позволил идентифицировать многие эффекторные молекулы его сигнальных каскадов. Так, одними из первых были идентифицированы восемь а-субъединиц G-белков, которые являются своего рода визитной карточкой сигнального каскада. Наиболее представлено семейство Gi/Go, четыре представителя которого экспрессируются во вкусовых клетках: а-гастдуцин, а-трансдуцин. О гастдуцине: поведенческие эксперименты и регистрации от вкусового нерва показывают, что мыши, у которых была подавлена (knock out) экспрессия гастдуцина, оказались на два порядка менее чувствительны к горьким и сладким (но не к соленым и кислым) веществам по сравнению с мышами дикого типа (Wong et al., 1996). Это однозначно говорит о принципиальной роли гастдуцина в формировании горького и сладкого вкуса. Методом single cell RT-PCR анализировалась экспрессия субъединиц G-белков, и было показано, что гастдуцин, скорее всего, состоит из а-гастдуцина и Ру-субъединиц (Huang et al., 1999), причем а-субъединица, скорее всего, активирует фосфодиэстеразу (PDE), а Ру-комплекс контролирует фосфолипазу С (PLC) (Margolskee, 2002). Гастдуцин экспрессируется преимущественно в клетках типа II (Boughter

et al., 1997; Sbarbati et al., 1999; Smith et al., 1999; Yang et al., 2000b), что является необходимым условием для нормального рецептирования сладких и горьких стимулов (Wong et al., 1995; Ruiz-Avila et al., 2001). Поэтому гасдуцин-положительные клетки типа II могут быть хеморецепторными, однако они не формируют синапсы с эфферентными волокнами; возможно, они секретируют сигнальные молекулы, чтобы, например, модулировать активность соседних вкусовых клеток.

Эти и перечисленные выше данные говорят о том, что потенциально возбуждение вкусовых клеток может происходить путем модуляции активности ионных каналов G-белками или в результате изменения внутриклеточной концентрации циклических нуклеотидов, или за счет генерации инозитолтрифосфата (1Р3) и мобилизации Са2+ (Ogura et al., 2002). Действительно, многие элементы циклонуклеотидного и фосфоинозитидного каскадов найдены во вкусовых клетках, и в частности: аденилатциклаза (AC) (Abaffy, et al., 2003), PDE (Kinnamon and Margolskee, 1996), циклонуклеотид-зависимые каналы (Kaupp and Seifert, 2002, Wei et al., 1998), PLC (Asano-Miyoshia et al., 2000, Rossler et al., 1998), 1Р3-рецепторы (Yan et al., 2001) и TRP-каналы (Zhang, et al., 2003). Однако вклад этих каскадов в возбуждение вкусовых клеток химическими стимулами фактически не исследован и мало известно о том, какие рецепторы контролируют активность этих сигнальных систем.

В 2000г было идентифицировано семейство генов кодирующих так называемые T2R/TRB-penenTopbi (Adler et al, 2000), специфически экспрессирующиеся во вкусовых клетках, и, по-всей видимости, функционирующие как вкусовые рецепторы (Lindemann, 2001). Со структурной точки зрения, T2R/TRB рецепторы лишь отдаленно связаны с другими GPCR, такими как VIR (рецепторы на феромоны), и даже внутри семейства степень гомологии составляет 30-70%. Эти рецепторы имеют высококонсервативные области в цитоплазматических петлях и прилежащих к ним трансмембранных сегментах (предположительно они выполняют функцию взаимодействия с G-белками) и сильно дивергирующие экстраклеточные области (потенциальные сайты связывания с лигандами) (Gilbertson, et al., 2000). У крыс и мышей T2R/TRB рецепторы экспессируются в 15 - 20% вкусовых рецепторных клеток желобоватых и листовидных сосочков и в очень малом количестве вкусовых рецепторных клеток грибовидных сосочков (Margolskee, 2002). Основываясь на данных in situ гибридизации, показано, что T2R/TRB рецепторы экспрессируются в определенных типах вкусовых рецепторных клеток (Adler et al., 2000). В частности, T2R/TRB рецепторы экспрессируются в клетках экспрессирующих гастдуцин (Gilbertson, et al., 2000; Margolskee, 2002). В биохимических экспериментах было показано, что T2R5 - рецептор, распознающий горькое вещество циклогексимид, селективно активирует гастдуцин, но не другие G-белки, экспрессируемые во вкусовых клетках (Chandrachekar et al., 2000). Это дает основание думать, что именно гастдуцин связывает T2R5 и возможно другие рецепторы к горьким веществам с эффекторными ферментами. Было также показано, что горькие вещества стимулируют синтез 1Р3 и что этот ответ блокируется антителами к Ру-субъединицам гастдуцина и к РЬСРг в. то время как контрольные антитела и антитела к а-гастдуцину были неэффективны (Rossler et al., 2000). Это говорит о том, что после рецептор-стимулируемой диссоциации гастдуцина именно ру-комплекс активирует PLCp2, запуская тем самым образование 1Р3 и диацилглицерола (DAG).