Смекни!
smekni.com

Перспективы применения липосомальных форм (стр. 12 из 14)

В отличие от медицинских косметические препараты наносятся только на поверхность кожи, и поэтому важнейшим вопросом является способность липосомальных частиц преодолевать трансэпидермальный барьер. Современная технология производства липосом позволяет получать частицы с размерами не ниже 100 нм. Обычно размеры липосом колеблются от 200 до 600 нм. Однако эти значения в десятки раз превышают размеры вирусов, в том числе и оболочечных, окруженных липидной мембраной, не способных проникать через неповрежденную кожу (см. выше). Поэтому трудно представить себе механизм преодоления гигантской липосомальной частицей микрокапилляров рогового и блестящего слоев эпидермиса. Разработчики липосомальных косметических препаратов полагают, что липосомальная частица обладает способностью деформировать свою структуру в процессе преодоления микрокапилляров (см. рис.15).


Рис15. Схематическое изображение "способности" липосомальной частицы деформировать структуру в процессе преодоления микрокапилляра

Попробуем оценить вероятность такого события. Предположим, что исходная липосомальная частица (Лисх) имеет средний диаметр около 400 нм. Объем частицы сферы при этом составит

примерно 33,5·106 нм3. После деформации частицы за счет размещения её в микрокапилляре объем деформированной частицы цилиндра может быть выражен в соответствии с формулой

,где Rдеф является радиусом отверстия микрокапилляра, а L - длина цилиндра. Так как мы исходим из предположения о том, что липосомальная частица при внедрении в микрокапилляр не разрушается, то Vисх=Vдеф. Отсюда


Принимаем, что радиус микрокапилляра составляет примерно 5 нм, тогда

Полученное значение более чем в 20 раз превышает толщину рогового слоя и примерно в десять раз - суммарную толщину рогового и блестящего слоев эпидермиса. Это означает, что, извиваясь в виде своеобразного "червячка" (повторяя изгибы микрокапилляров), деформированная липосомальная частица (Лдеф) должна заполнить смежные микрокапилляры рогового и блестящего слоев и, при этом, часть липосомального фрагмента или останется на поверхности кожи, или проникнет в зернистый, шиповидный слои эпидермиса и далее. У нас нет фактов, которые могли бы подтвердить или опровергнуть возможность реализации такого механизма преодоления трансэпидермального барьера. Отметим, однако, что для его реализации требуется, чтобы бислойная липидная мембрана липосомы имела высокую эластичность и прочность.

Аналогичным образом рассмотрим вероятность размещения Лдеф в микрокапилляре, имеющем радиус около 5 нм с учетом толщины удлиненной частицы. Если диаметр Лдеф равен диаметру микрокапилляра с ориентировочным значением 10 нм, то на этом расстоянии необходимо разместить две бислойные липидные мембраны и при этом между ними должен остаться промежуток для размещения внутрилипосомального водного раствора и для предотвращения слипания мембран, которое, в принципе, может вести к дроблению липосомальной частицы на более мелкие фрагменты. Принимая во внимание, что фосфолипиды, образующие бислойные мембраны, имеют длинноцепочечные жирнокислотные "хвосты", состоящие из 16-22 метиленовых (СН2) фрагментов, можно ориентировочно оценить толщину бислойной мембраны. Учитывая то обстоятельство, что длина ординарной связи С-С составляет примерно 1,54 A (или 0,15 нм), а двойной связи С=С - примерно 1,42 A (или 0,14 нм) и углы между атомами углерода в жирнокислотном фрагменте равняются 109° (для насыщенных связей) и 120° (для ненасыщенных связей), толщина бислойной мембраны составит около 5-6 нм. Следует отметить условности такого рода расчетов, так как, например, ранее при обсуждении строения чешуек рогового слоя приводилась толщина однослойной мембраны, равная 12-15 нм. А ведь нам необходимо разместить в микрокапилляре с диаметром около 10 нм две такие бислойные мембраны и сохранить пространство для размещения внутрилипосомального водного раствора. Эти достаточно простые арифметические расчеты, которые, конечно, грешат некоторой неточностью, указывают, тем не менее, на возможные затруднения в объяснении механизма преодоления трансэпидермального барьера липосомальными частицами. Не затрагивая деталей этого механизма, связанных с возможностью деформации бислойной мембраны по толщине под внешним воздействием, а также экспериментально установленный факт слияния двух липидных мембран при их сближении, можно сформулировать парадокс, связанный с механизмом транспорта липосом через неповрежденную кожу.

В дискуссиях об "особом статусе" липосомальных косметических препаратов часто возникает вопрос о том, почему они нашли такое широкое распространение и почему очень известные и, несомненно, уважаемые косметологические фирмы считают своими долгом выпускать такого рода косметику

В водных системах, содержащих вещества, способные образовывать липидные мембраны, возможно два варианта ассоциации этих веществ. Один вариант связан с образованием "истинных" липосом Другой вариант ассоциации липидов в водной системе может быть связан с образованием, так называемых, наносом (nanosomes, niosomes и т.д.), которые представляют собой мельчайшие сферы, состоящие из липидов, не имеющие, в отличие от липосом, внутреннего водного резервуара и отделенные от внешней водной среды монослойной липидной мембраной Образование таких частиц, по-видимому, является энергетически оправданным, так как необходимость структурирования (снижения энтропии системы) проявляется только в организации поверхностного ламинарного монослоя, в то время как внутренние молекулы, содержащиеся в сфере, располагаются хаотично.

Схематическое изображение наночастицы (наносомы)

Можно полагать, что наночастицы образуются при интенсивном физическом воздействии на липосомальные структуры (например, с помощью ультразвука) и что вероятность их образование увеличивается при увеличении относительного содержания липидов (жиров) в исходной системе, предназначенной для получения везикул (пузырьков) и/или липидных сфер. На рисунке схематично представлен предполагаемый постадийный процесс образования липосом и наночастиц.


Возможная схема образования липосом и наночастиц в процессе обработки липидно-водных систем ультразвуком

Принимая такую схему, учитывающую то обстоятельство, что наночастицы могут образовываться при разрушении липосомальных частиц, а также приведенные выше рассуждения о возможных размерах липосомальных фрагментов следует предположить, что диаметр наночастиц может быть принципиально более низким.

Часто разработчики косметических препаратов объединяют липосомы и наночастицы под одним обозначением - "везикулы". Так в патенте фирмы Л`Ореаль [24] говорится о том, что везикулы обычно имеют средний диаметр между 10 и 5000 нм. Однако нам неизвестны случаи строгого доказательства того, что липосомы (собственно "везикулы" - пузырьки) имели бы размеры меньше 100 нм (обычно их диаметр не ниже 300 нм). А вот липидные сферы (наночастицы) могут иметь диаметр около 10 нм.

Основная суть цитируемого патента заключается в том, что авторы получают либо одновременно, либо в отдельности два вида частиц. Первая категория - это липосомы, предназначенные для доставки активного агента в глубокие слои кожи, а вторая категория - липосомы для доставки в поверхностные слои кожи. Для обеих категорий препаратов были определены следующие сравнительные характеристики:

- глубина проникновения активного агента;

- потенциал инкапсуляции.

Глубина проникновения активного агента определялась посредством использования органического вещества, которое находилось в свободно-радикальном состоянии и его присутствие в тех или иных слоях кожи (ухо свиньи) определялось с помощью известного метода электронного парамагнитного резонанса. Следует заметить, что вещество (N-(1-оксил-2,2,6,6-тетраметил-4-пиперидил)-N,N-диметил-N-гидроксиэтиламмоний иодид), обладало амфотерными свойствами, то есть имело сродство к полярным молекулам, например, к воде, а наличие углеводородного цикла с четырьмя метильными фрагментами могло определять его сродство к липидам. Кроме этого, биофизические исследования свидетельствуют, что чем меньше диаметр сферы, верхний слой которой образован из регулярно расположенных полярных групп, тем прочнее образующиеся в процессе сольватации на поверхности сферы ионные пары и, наоборот, для больших сфер прочность связывания полярных молекул (ионов) с поверхностью снижается.

Поэтому установленная авторами разработки предельная величина константы диффузии (>1·10-7cм2с-1) может относиться к новому состоянию системы, включающему большое количество липидных сфер (наночастиц). Такие частицы, вне всякого сомнения, более подвижны по сравнению с липосомами и их проникающая способность достаточно высока, что и фиксируется экспериментами с меткой, которая, как уже отмечалось выше, с одной стороны, обладает определенной липофильностью, а с другой стороны, способна образовывать достаточно прочную (ионную и/или водородную) связь с поверхностью сферы.

Остается объяснить приводимые авторами данные по инкапсулированию глюкозы. Степень инкапсулирования измеряется количеством раствора глюкозы, инкапсулированного в "везикулах" (это могут быть как липидные сферы, так и липосомы), измеряемого в мкл на единицу веса липидов, составляющих мембрану (или входящих в состав сфер). Ее определяют немедленно после отделения свободной глюкозы (не вошедшей в капсулы), а также спустя 24 часа после отделения. Разность между этими двумя последовательными измерениями иллюстрирует проницаемость (а скорее стабильность) капсул и может считаться их потенциалом инкапсулирования (или потенциалом стабильности). Естественно, что и абсолютные величины степени инкапсулирования (хотя при этом нужны точные данные по исходной концентрации глюкозы в обоих экспериментах), и потенциалы инкапсулирования (или потенциал стабильности для капсул малого размера) оказались более высокими, чем для капсул большего размера. А теперь рассмотрим сродство молекул глюкозы к ингредиентам, входящим в состав капсул, используемым разработчиками фирмы Л`Ореаль. В патенте представлены десять вариантов везикул, доставляющих активный агент в глубокие слои кожи (авторы называют их липосомами). В их составах содержатся триглицерилцетиловый эфир, смесь монотриглицерин-, ди- и трицетиловых эфиров, холестерин, сорбитана пальмитат, ПЭГ 8 стеарат, ПЭО5 фитостерола, дистеарат полиоксиэтилен(20)метилглюкозы, диглицерилдистеарат, моно- и дистеараты сахарозы, тетреглицерилтристеарат. Простое перечисление этих ингредиентов, даже для неподготовленного читателя, позволяет сделать вывод о том, что глюкоза, являющаяся многоатомным спиртом (полиолом) имеет высокую степень сродства с указанными ингредиентами, содержащими большое число гидроксильных групп. В отличие от этого, основной "липидной" составляющей везикул второй группы является лецитин, концентрация которого варьирует от 100 до 20% или димиристилфосфат (95%). Эти вещества, способные образовывать бислойные липидные мембраны, образуют липосомы. При этом местом локализации глюкозы может являться внутренний водный резервуар липосомы, а также ее поверхность, с полярными группами которой возможно образование нестабильных водородных связей.