Б. Нарушение газового состава крови.
В самом определении дыхательной недостаточности заложен смысл изменения газового состава крови, т.е. неспособность дыхательной системы обеспечить нормальный газовый гомеостаз артериальной крови. К этим показателям относятся следующие:
· Напряжение кислорода: (РаО2 90-100 мм рт.ст.);
· Напряжение углекислого газа (РаСО2 40 мм рт.ст.);
· Показатель водородных ионов (рН 7,40 ед.);
· Объем кислорода (180-200 мл/л);
· Объем углекислого газа (540-550 мл/л);
· Насыщение гемоглобина кислородом (96-98%);
· Остальные показатели кислотно-щелочного равновесия: буферные основания (ВВ 40-60), стандартный бикарбонат (SB 25), избыток или дефицит (ЕВ-2,5-+2,5 ммоль/л).
При дыхательной недостаточности первоначально развивается гипоксемия (снижение раО2 ниже 90 мм рт.ст.) и далее гиперкапния (раСО2 более 40 мм рт.ст.) и ацидоз (рН менее 7,40 ед.) с потерей буферных оснований. Сатурация гемоглобина кислородом снижается до 80% и менее (цианоз). Гипоксемия, гиперкапния и ацидоз активируют периферические и центральные хеморецепторы. Кроме того, центральные хеморецепторы стимулируются ионами водорода спинномозговой жидкости, где также наблюдается сдвиг рН в кислую сторону (с 7,32 ед. и менее). Гиперкапнический и гипоксический стимулы активируют дыхательный центр и значительно повышают уровень легочной и альвеолярной вентиляции. Так, сдвиг рН артериальной крови на 0,01 ед. удваивает легочную вентиляцию, а повышение раСО2 на 1 мм рт.ст. увеличивают МОД на 1,5 л/мин. Изменяется ход кривой диссоциации оксигемоглобина.
В. Нарушение диффузионной способности легких.
Нарушения диффузии. Газообмен в легких происходит благодаря способности газов диффундировать через альвеолярно-капиллярную мембрану при различном парциальном напряжении газов по обе стороны мембраны. Объем диффундируемого газа зависит от площади диффузионной поверхности и величины легочного кровотока, участвующего в газообмене. У здорового человека площадь альвеолярной поверхности составляет 150 м2 и капиллярной – 130 м2. Одномоментно в капиллярах легких находится 200-300 мл крови, в среднем кровь задерживается в легких в течение 0,25-0,75 с. Диффузионную способность легких (ДЛ) рассчитывают по формуле:
ДЛ =V/dP, мл/мин×мм рт.ст.,
где: V – объемная скорость транспорта газа;
dP – разность парциального давления газа по обе стороны мембраны.
Показатель диффузионной способности легких в норме колеблется в пределах 15-30 мл О2 мин/мм рт.ст. (или 230 мл/мин/кПа) и указывает, какое количество газов в мл проходит через альвеолярно-капиллярную мембрану в 1 минуту при разности парциального давления в 1 мм рт.ст. При изменении физико-химических свойств мембраны увеличивается мембранное сопротивление диффузии. Чем длиннее путьгаза из альвеолы до его носителя в крови(эритроцит или плазма), тем медленнее протекает процесс.
Диффузионное сопротивление зависит также от специфических свойств диффундируемого газа. Кислород диффундирует значительно медленнее, так как его растворимость в ткани мембраны в 20 раз меньше, чем углекислого газа. Поэтому диффузионные нарушения при сохранении вентиляции и перфузии сводятся к снижению насыщения крови кислородом, так как углекислый газ диффундирует в достаточных количествах, а также используется для пополнения бикарбонатной буферной системы.
Диффузионный путь газов в среднем равен 0,5-1,0 мкм. Первый этап диффузии представляет собой альвеолярно-капиллярную мембрану (толщина мембраны в среднем равна 0,25-0,36 мкм), состоящую из клеток альвеолярного эпителия (пневмоциты, макрофаги), базальной мембраны, межмембранного пространства и эндотелиальных клеток капилляра. Примерно 80% поверхности альвеол имеет непосредственный контакт с эндотелием капилляров.
На первом этапе диффузии происходит переход газа из альвеол в эпителиальные клетки, в которых газ находится уже в растворенном виде. Процесс диффузии газов через альвеолярно-капиллярную мембрану осуществляется с участием цитохрома Р450, образующего с кислородом и углекислым газом нестойкие соединения. Благодаря этому упорядочивается перемещение молекул по градиенту концентрации и тем самым значительно ускоряется процесс диффузии.
Градиент парциального давления в первой части диффузионного пути зависит от парциального давления в альвеолах и среднего парциального напряжения газа в плазме легочных капилляров (Pл – Ркап).
На втором этапе газ диффундирует через плазму крови, мембрану и цитозоль эритроцитов до молекулы гемоглобина. Градиент парциального напряже6ния на втором этапе диффузионного пути равен разности парциального давления в плазме легочных капилляров и в эритроцитах. Препятствие при переходе газа через мембрану эритроцита называют внутрикапиллярным сопротивлением диффузии. Эта величина обратно пропорциональна объему крови, одномоментно находящемуся во внутри легочных капиллярах. При редукции капиллярной сети емкость легочных капилляров и диффузия в легких уменьшаются.
Большое значение в процессе диффузии имеет способность газов соединяться с гемоглобином. Наиболее высоким сродством к гемоглобину обладает угарный газ, поэтому парциальное давление СО в плазме остается почти без изменений. Количество СО, поступившее из альвеол в кровь, ограничено лишь свойствами мембраны, а не емкостью крови. Угарный газ является идеальным газом для исследования диффузии.
Хорошей диффузионной способностью обладает закись азота (N2O), но она не образует соединение с гемоглобином. При прохождении кровью одной четверти пути по капилляру парциальное давление N2O в плазме крови уже равно альвеолярному. Ускорение диффузии закиси азота в кровь возможно только благодаря повышению скорости перфузии.
Сродство гемоглобина к кислороду занимает промежуточное положение между угарным газом и закисью азота.
Повышение раО2 в плазме крови после диффузии кислорода в эритроцит происходит намного быстрее, чем для угарного газа, но не столь быстро, как для закиси азота. В покое для выравнивания рО2 по обе стороны альвеолярно-капиллярной мембраны необходимо 0,25 с. В норме эритроцит проходит капилляр за 0,75 с. Следовательно, увеличение скорости перфузии в 3 раза не отразится на оксигенации, если нет ограничения диффузии. При уплотнении альвеолярно-капиллярной мембраны скорость диффузии кислорода снижается до 0,5-0,7 с. У таких пациентов ускорение скорости кровотока при физической нагрузке приводит к гипоксемии.
Большим сродством к углекислому газу обладает восстановленный гемоглобин, чем оксигемоглобин. Поэтому диссоциация оксигемоглобина в тканях облегчает образование карбгемоглобина, а образование оксигемоглобина способствует выведению углекислого газа легкими. Диффузия углекислого газа происходит по градиенту концентрации, равному 6 мм рт.ст., поэтому рСО2 по обе стороны мембраны быстро выравнивается.
Диффузионные расстройства возникают при уменьшении дыхательной поверхности, снижении градиента парциального напряжения газов в альвеолярном воздухе и крови, увеличении диффузионного пути вследствие утолщения альвеолярно-капиллярной мембраны.
Уменьшение диффузионной способности легких является результатом повышения диффузионного сопротивления в альвеолярно-капиллярной мембране и/или в легочном капилляре (альвеоло-капиллярный блок). На начальном этапе суммарная диффузионная способность легких сохраняется в пределах нормы за счет компенсаторного снижения сопротивления диффузии крови. Повышение диффузионного сопротивления капиллярной крови может быть компенсировано снижением мембранного сопротивления диффузии благодаря повышению альвеолярной вентиляции, увеличению объема вдоха и, как следствие, альвеолярной и диффузионной поверхности.
Ограничение поверхности диффузии наблюдается при эмфиземе легких, деструктивных поражениях альвеол и капилляров, выпоте или объемном процессе в плевральной полости. После резекции легкого диффузионная поверхность уменьшается пропорционально объему оперативного вмешательства. Первичное утолщение альвеолярно-капиллярной мембраны и увеличение диффузионного пути наблюдается при бериллиозе, асбестозе, саркоидозе, склеродермии, аллергическом альвеолите. Ограничение дыхательной поверхности, утолщение мембраны и уменьшение диффузии происходит при интерстициальном отеке, альвеолярном фиброзе, респираторном дистресс-синдроме взрослых.
Вторичные нарушения диффузии в плазме крови возникают при расстройствах гемодинамики (сердечно-сосудистая недостаточность), патологии системы крови (анемии), а также при выраженной тахикардии, когда вследствие уменьшения времени контакта гемоглобина эритроцитов крови с альвеолярным воздухом может наблюдаться ускорение движения крови, и эритроцит пребывает в легочном капилляре менее чем 0,25 с (обычно это время составляет 0,5-0,75 с).
Улучшить альвеолярно-капиллярную диффузию можно ингаляцией кислорода, уменьшением интерстициального отека, противовоспалительной терапией и т.п.
Функциональная диагностика диффузионных нарушений.Наибольшее распространение получили методики, в которых диффузия оценивается по способности СО диффундировать через альвеолярно-капиллярную мембрану. При проведении функциональных исследований используют также кислород, углекислый газ, закись азота и др. Используемый для исследования газ должен иметь более высокую растворимость в крови, чем в альвеолярно-капиллярной мембране, так как этим определяется направленность процесса диффузии от альвеол к капиллярной крови и способность образовывать соединения с гемоглобином, иначе будут определяться изменения газов крови, связанные с перфузией. Существует два способа определения диффузионной способности легких: метод "одиночного вдоха" (пациент делаетглубокий вдох смесью газов CO и О2, задерживает дыхание на 10 с, затем делает спокойный выдох) и метод "устойчивого состояния" (основан на длительном спокойном дыхании до состояния насыщения, когда вследствие выравнивания рСО по обе стороны мембраны концентрация СО в выдыхаемом воздухе перестает уменьшаться).