Смекни!
smekni.com

Сравнительный анализ структуры наследственной компоненты подверженности к бронхиальной астме и т (стр. 3 из 22)

На протяжении дыхательного тракта экспрессируются как цитохромы P450, так и ферменты второй фазы биотрансформации. Так в различных сегментах легких обнаружены ферменты семейств CYP1, 2, 3 и 4 [Wheeler, Guenthner, 1991; Raunio et al., 1995]. Из ферментов второй фазы наиболее представлены по всей протяженности респираторного тракта NAT1, NAT2, а также GSTμ1, GSTμ3 и GSTπ1. Необходимо отметить, что глутатионовые S-трансферазы p класса составляют более чем 90% от общей GST-активности в эпителиальных клетках легких человека [Frayer et al., 1986] .

Таким образом, знания об экспрессии генов ферментов метаболизма в различных органах и тканях, а также выявление их субстратной специфичности создают возможность объяснения тканеспецифичного метаболизма ксенобиотиков [Ravindranath, 1998]. Однако для этого необходимо изучение специфичного взаимодействия ферментов I-й и II-й фазы в метаболизме различных по химическому составу эндогенных и экзогенных ксенобиотиков, в том числе и лекарственных препаратов, определение их активности и генотипирования полиморфных генов [Pelkonen, Raunio, 1997; Nebert et al., 2003].

Одним из важных свойств системы цитохрома Р450 является индукция – активация транскрипции гена в присутствии субстрата [Ляхович, Цырлов; 1981]. Ранее предполагалось, что ксенобиотики сами являются факторами регуляции собственного метаболизма, однако впоследствии были показаны генетические механизмы процесса индукции [Poland et al., 1973]. Cпособность к индукции характерна для многих генов ферментов метаболизма ксенобиотиков семейств цитохрома Р450 [Honkakoski, Negishi, 2000] и имеет для организма приспособительное значение к меняющимся условиям химического окружения [Denison, Whitlock, 1995], в некоторых случаях достаточно довольно низких концентраций ксенобиотиков-индукторов, чтобы вызвать сильный ответ [Whitlock, Gelboin, 1974; Surry et al., 2000].

Некоторые ксенобиотики оказывают противоположный индукции эффект – ингибируют активность цитохромов Р450, что происходит вследствие образования реактивного метаболита, который ковалентно фиксируется в активном центре фермента. Показано ингибирование активности ферментов некоторыми лекарствами, например, изониазидом [Wen et al., 2002]. В случае, когда несколько ксенобиотиков метаболизируются одним и тем же ферментом семейства цитохрома Р450, они являются конкурентными ингибиторами друг для друга.

1.1.3. Генетический полиморфизм ферментативной системы метаболизма ксенобиотиков

Молекулярные механизмы полиморфизма генов ферментов метаболизма ксенобиотиков обусловлены следующим:

a) Нуклеотидные различия в кодирующем регионе гена приводят к замене аминокислоты и изменению в деятельности фермента или связывания субстрата (например, CYP2D6).

б) Делеции в кодирующем регионе приводят к отсутствию фермента или недостаточному синтезу белка (например, CYP2A6, CYP2D6 и GSTM1).

в) Полиморфизмы в некодирующей области затрагивают элементы транскрипционного контроля, вовлеченные в экспрессию и индукцию фермента (например, CYP1A1).

г) Изменения в сигнале полиаденилирования изменяет количество фермента (например, NAT1).

д) Генная амплификация повышает количество фермента (например, CYP2D6).

е) Сложные взаимодействия полиморфных генов и/или их ферментативных продуктов (например, более высокая активность CYP1A1 и 1A2 у лиц с GSTM1-дефицитом, вероятно из-за большего бионакопления компонентов индукции) [Bartsch et al., 2000].

С феноменом генетического полиморфизма ферментов, участвующих в биотрансформации ксенобиотиков впервые столкнулись фармакологи, и это явление обусловливает значительные межиндивидуальные различия в метаболизме – до 104 [Guengerich, 2003]. По причине существования многочисленных данных с использованием различных обозначений аллелей генов цитохромов Р450 в настоящее время выработана единая классификация, рекомендованная к применению для исследователей [Nelson et al., 1996].

У человека подкласс GSTμ кодируется генами, локализованными на хромосоме 1 в области 1р13.3 и включает пять тандемно расположенных генов: GSTM1, GSTM2, GSTM3, GSTM4 и GSTM5 [Афанасьева, Спицин, 1990]. Для гена GSTM1 установлены две мутации: точковая замена, не имеющая функциональных проявлений [De Long et al., 1988], и протяженная делеция гена (10 т.п.н.), которая возникла в результате неравного кроссинговера между двумя гомологичными последовательностями, фланкирующими ген GSTM1, проявляющаяся отсутствием белка [Seidegard, 1988]. GSTM1*A и GSTM1*B кодируют GSTM1A и GSTM1B ферменты, которые функционально идентичны и различаются только по одной аминокислоте. GSTM1A содержит лизин в позиции 172, а GSTM1B – аспарагинин в этом же положении [Hatagima, Strange, 2000].

Ген GSTT1 картирован на хромосоме 22 (локус 22q11.2). Его полиморфизм обусловлен наличием двух аллелей: функционально активного GSTT1*1 и неактивного, так называемого «нулевого» (GSTT1*0). Аллель GSTT1*0 соответствует частичной или полной делеции, приводящей к снижению активности белка [Pemble et al., 1994].

Ген GSTP1 локализован на хромосоме 11 (11q13) и преимущественно экспрессируется в альвеолярных клетках, альвеолярных макрофагах, бронхиолах и плаценте. Для гена GSTP1 описаны две точковые мутации: замена аденина на гуанин в 313 положении первичной последовательности GSTP1, проявляющейся заменой изолейцина 105 на валин (Ile105Val) в 5 экзоне, и замена С341Т, проявляющейся заменой аланина 114 на валин (Ala114Val) в 6 экзоне [Board et al., 1989]. При мутации 105Val в 7 раз увеличивается каталитическая активность фермента по отношению к полициклическим ароматическим соединениям, но в 3 раза снижена активность по отношению к 1-хлор-2,4-динитробензену [Watson et al., 1998].

К настоящему моменту описаны девять аллелей гена CYP2C19, два активных аллеля CYP2C19*1A (wt1) и CYP2C19*1B (wt2) и семь дефектных аллелей CYP2C19*2A (m1A), 2C19*2B (m1B), 2C19*3 (m2), 2C19*4 (m3), 2C19*5A (m4 или TRP433), 2C19*5B, и 2C19*6 (m5) [Romkes et al., 1991; Richardson et al., 1995; Ibenau et al., 1998]. Основной генетический дефект, найденный у «медленных» метаболизеров (S)-мефенитоина – точечная замена G на A в пятом экзоне в положении 681 гена CYP2C19 (CYP2C19*2), приводящая к аберрантному сайту сплайсинга. Образующаяся мРНК не содержит первые 40 оснований пятого экзона, что нарушает рамку считывания, и приводит к образованию стоп-кодона. В печени индивидуумов, гомозиготных по этому дефекту, обнаруживается лишь аберрантно сплайсированная РНК. Таким образом, сплайсинг проходит исключительно с использованием сайта, возникшего в результате мутации [Крынецкий, 1996]. Этот полиморфизм является важным в отношении метаболизма лекарственных препаратов, связанный с нарушением способности цитохрома Р450 метаболизировать антиэпилептический препарат (S)-мефенитоин, а также омепразол, прогуанил, некоторые барбитураты и др. Кроме того показана еще одна точечная замена G→A в положении 636 в четвертом экзоне гена CYP2C19 (CYP2C19*3), приводящая к продукции укороченного белка [Ibenau et al., 1999; Xie et al., 1999; Yang et al., 2004; Schwab et al., 2004].

Ген CYP2E1 локализован на хромосоме 10q24.3-qter и состоит из 11413 п.н. и содержит 9 экзонов, кодирующих продукт из 493 аминокислот [Kolble, 1993]. Для гена CYP2E1 (табл. 1) наиболее часто рассматриваются тесно сцепленные полиморфизмы по рестрикционным эндонуклеазам PstI/RsaI (мутантный аллель CYP2E1*5B), локализованные в 5’-фланкируещем регионе гена [Hayashi et al., 1991; Watanabe et al., 1994;], при которых мутантный аллель способствует повышенной транскрипционной и ферментативной активности, а также DraI полиморфизм (мутантный аллель CYP2E1*6), расположенный в 6 интроне [Uematsu et al., 1991], для редкого аллеля которого показаны мутации, влияющие на экспрессию гена и каталитическую активность соответствующего белка [Hu et al., 1997].

Таблица 1

Номенклатура аллелей CYP2E1 гена (составлена по данным сайта http://www/imm.ki.se/CYPalleles)

Аллель Белок Однонуклеотидные замены Эндонуклеаза рестрикции
CYP2E1*1A CYP2E1*1B CYP2E1*1C CYP2E1*1D CYP2E1*2 CYP2E1*3 CYP2E1*4 CYP2E1*5A CYP2E1*5B CYP2E1*6 CYP2E1*7A CYP2E1*7B CYP2E1*7C CYP2E1.1 CYP2E1.1 CYP2E1.1 CYP2E1.1 CYP2E1.2 CYP2E1.3 CYP2E1.4 CYP2E1.1 CYP2E1.1 CYP2E1.1 CYP2E1.1 CYP2E1.1 - 9893C>G 6 тандемов 8 тандемов 1132G>A 10023G >A 4768G>A -1293G>C -1053C>T 7632T>A -1293G>C -1053C>T 7632T>A -333T>A -71G>T;-333T>A -333T>A;-352A>G TaqI DraI, XbaI PstI RsaI DraI PstI RsaI DraI

Таким образом, качественный состав и количественные соотношения изоформ ферментов метаболизма ксенобиотиков могут меняться под воздействием непосредственно самих же ксенобиотиков на организм. В зависимости от структуры исходного субстрата может происходить либо его биоактивация и увеличение токсичности, либо обезвреживание ксенобиотика. В результате ингибирования, индукции и генетического полиморфизма ферментов метаболизма ксенобиотиков может возникать дефицит или очень высокая активность отдельных изоформ и, как следствие, иметь место нежелательные для организма последствия: дисбаланс процессов биотрансформации ксенобиотиков, приводящий к развитию патологического состояния организма, а также снижение терапевтической активности лекарственных препаратов и всевозможные проявления побочных эффектов от их терапевтического действия.

1.2. Молекулярно-генетические аспекты мультифакториальных заболеваний (бронхиальная астма и туберкулез)

Развитие подавляющего большинства мультифакториальных заболеваний (МФЗ) происходит при сочетанном влиянии разнообразных факторов. МФЗ представляют группу болезней, развитие которых определяется неблагоприятным сочетанием полиморфных вариантов генов, контролирующих возникновение и патогенез заболевания в совокупности с определенными воздействиями факторов среды. Для МФЗ характерен ряд особенностей, которые с одной стороны, позволяют рассматривать эту группу патологий как модель изучения комплекса специфичных генов и экзогенных факторов, которые, взаимодействуя между собой, формируют норму реакции устойчивости человека к среде обитания [Гинтер, 2001; Бочков и др., 1984], а с другой - значительно осложняют обобщение данных для установления истинных генов подверженности сложнонаследуемых заболеваний. Например, существенное увеличение распространенности многих полигенных заболеваний (астма и связанные с атопией патологические состояния, туберкулез и др.) нельзя объяснить изменениями в генетической структуре за прошедшие десятилетия. Вероятно, что существующие генетические факторы, взаимодействующие с изменившимися условиями окружающей среды (снижение числа инфекционных болезней, повсеместная иммунизация, особенности питания и др.) вызывают повышенную восприимчивость популяции к вышеперечисленным заболеваниям [Organov, Maslennikova, 1999; Sengler et al., 2002]. Это пример того, как воздействие факторов внешней среды может значительно изменить положение порога подверженности к МФЗ [Фогель, Мотульски, 1990]. Кроме того, необходимо учитывать наличие сочетаний индивидуальных для каждой отдельно взятой популяции аллельных вариантов генов предрасположенности к заболеванию, что отражают различающиеся результаты анализа ассоциаций с МФЗ. Тем не менее, установление генов предрасположенности и изучение их совместной работы, выявление особенностей взаимодействия с факторами негенетической природы в развитии МФЗ, для которых пожизненный риск оценивается в западных популяциях порядка 60%, вызывает естественное стремление исследователей к пониманию механизмов нормальной и патологической реализации генетической информации [Пузырев, 2003].