Н` = 23,037
Вывод. Скорректированное значение Н` статистики Краскела-Уоллиса несущественно отличается от значения Н, т.о. мы можем отвергнуть гипотезу Н0 на минимальном уровне значимости. Следовательно , мы подтвердили результат полученный ранее : существует зависимость между УК в крови больных СКВ и степенью тяжести поражения почек .
3. Непараметрический дисперсионный анализ по одному признаку с применением критерия Джонкхиера для нескольких выборок, упорядоченных по возрастанию влияния фактора
Нам заранее известно, что имеющиеся группы результатов упорядочены по возрастанию влияния фактора.. В нашем случае фактором является степень тяжести ГН. В таких случаях целесообразно использовать критерий Джонхиера , более чувствительный против альтернатив об упорядоченном влиянии фактора [5].
Статистическая модель
Имеется k совокупностей, в нашем случае 5 совокупностей. Каждая выборка извлекается из своей совокупности. Все наблюдения независимы. имеющиеся группы результатов упорядочены по возрастанию влияния фактора
. 1-й столбец Таблицы №1 отвечает наименьшему уровню фактора, последний – наибольшему, а промежуточные столбцы получили номера, соответствующие их положению. В нашем случае фактором является степень тяжести поражения почек [4] .Гипотезы
Н0 :
= =…= ( влияние фактора упорядоченно.)Н1 :
…Критическая область
Верхняя 5% область F-распределения, что в нашем случае соответствует значению критерия, превышающему значение 2,21. Данное число взято из таблицы А.4 на стр. 334 [6].
Вычисление значения критериальной статистики
Вычислим статистику Манна – Уитни. Сравниваем k способов обработки, в нашем случае 5. Поступим следующим образом : для каждой пары натуральных чисел u и v , где 1£u<v£k , составляем по выборкам с номерами u,vстатистику Манна – Уитни [4].
U =
, y )Определим так же статистику Джонхиера как :
J =
Для нахождения значений статистики Манна – Уитни будем использовать программу,( так как мы имеем выборки большого объема) написанную на языке FortranPowerStation для Windows , версия 4.0 .Выбор данного языка программирования связан с тем, что он максимально приближен к общепринятому языку математических формул. [11].
implicit real*8 (a-h, o-z)
dimension a1(210), a2(101),a3(98),a4(45),a5(25)
open (unit=11, file='1.dat', access='sequential', status='old')
open (unit=12, file='2.dat', access='sequential', status='old')
open (unit=13, file='3.dat', access='sequential', status='old')
open (unit=14, file='4.dat', access='sequential', status='old')
open (unit=15, file='5.dat', access='sequential', status='old')
open (unit=16, file='res.dat',access='append',status='unknown')
do 2222 i=1,210
read (11, 21) a1(i)
21 format(e8.1)
2222 continue
do 2223 i=1,101
read (12, 21) a2(i)
2223 continue
do 2224 i=1,98
read (13, 21) a3(i)
2224 continue
do 2225 i=1,45
read (14, 21) a4(i)
2225 continue
do 2226 i=1,25
read (15, 21) a5(i)
2226 continue
u12=0
do 101 i=1,210
do 91 j=1,101
if (a1(i)<a2(j)) then
u12 = u12+1
elseif (a1(i).eq.a2(j)) then
u12= u12+0.5
else
u12= u12+0.0
endif
91 continue
101 continue
u13=0
do 102 i=1,210
do 92 j=1,98
if (a1(i)<a3(j)) then
u13 = u13+1
elseif (a1(i).eq.a3(j)) then
u13= u13+0.5
else
u13= u13+0.0
endif
92 continue
102 continue
u14=0
do 103 i=1,210
do 93 j=1,45
if (a1(i)<a4(j)) then
u14 = u14+1
elseif (a1(i).eq.a4(j)) then
u14= u14+0.5
else
u14= u14+0.0
endif
93 continue
103 continue
u15=0
do 104 i=1,210
do 94 j=1,25
if (a1(i)<a5(j)) then
u15 = u15+1
elseif (a1(i).eq.a5(j)) then
u15= u15+0.5
else
u15= u15+0.0
endif
94 continue
104 continue
u23=0
do 105 i=1,101
do 95 j=1,98
if (a2(i)<a3(j)) then
u23 = u23+1
elseif (a2(i).eq.a3(j)) then
u23= u23+0.5
else
u23= u23+0.0
endif
95 continue
105 continue
u24=0
do 106 i=1,101
do 96 j=1,45
if (a2(i)<a4(j)) then
u24 = u24+1
elseif (a2(i).eq.a4(j)) then
u24= u24+0.5
else
u24= u24+0.0
endif
96 continue
106 continue
u25=0
do 107 i=1,101
do 97 j=1,25
if (a2(i)<a5(j)) then
u25 = u25+1
elseif (a2(i).eq.a5(j)) then
u25= u25+0.5
else
u25= u25+0.0
endif
97 continue
107 continue
u34=0
do 108 i=1,98
do 98 j=1,45
if (a3(i)<a4(j)) then
u34 = u34+1
elseif (a3(i).eq.a4(j)) then
u34= u34+0.5
else
u34= u34+0.0
endif
98 continue
108 continue
u35=0
do 109 i=1,98
do 99 j=1,25
if (a3(i)<a5(j)) then
u35 = u35+1
elseif (a3(i).eq.a5(j)) then
u35= u35+0.5
else
u35= u35+0.0
endif
99 continue
109 continue
u45=0
do 110 i=1,45
do 100 j=1,25
if (a4(i)<a5(j)) then
u45 = u45+1
elseif (a4(i).eq.a5(j)) then
u45= u45+0.5
else
u45= u45+0.0
endif
100 continue
110 continue
U=u12+u13+u14+u15+u23+u24+u25+u34+u35+u45
22 format(2x,'u12=',f10.3)
23 format(2x,'u13=',f10.3)
24 format(2x,'u14=',f10.3)
25 format(2x,'u15=',f10.3)
26 format(2x,'u23=',f10.3)
27 format(2x,'u24=',f10.3)
28 format(2x,'u25=',f10.3)
29 format(2x,'u34=',f10.3)
30 format(2x,'u35=',f10.3)
31 format(2x,'u45=',f10.3)
32 format(2x,'U=',f10.3)
write(16,22)u12
write(16,23)u13
write(16,24)u14
write(16,25)u15
write(16,26)u23
write(16,27)u24
write(16,28)u25
write(16,29)u34
write(16,30)u35
write(16,31)u45
write(16,32)U
end
Обработав таким образом результаты наблюдений, получаем значения статистики Манна – Уитни:
u12= 8441,000u13= 7793,500
u14= 3172,500
u15= 888,000
u23= 4637,500
u24= 1928,500
u25= 648,500
u34= 2054,500
u35= 805,500
u45= 411,000
Подставив в формулу полученные значения получаем результат для статистики Джонхиера:
J= 30780,5
Значение статистики Джонхиера очень велико, что свидетельствует в пользу гипотезы Н1 об упорядоченном влиянии фактора , в нашем случае – зависимости УК в крови больных СКВ от степени поражения почек. То есть мы снова подтвердили результат, полученный ранее.
Но поскольку предложенные выборки велики, то можно проверить полученный результат, подсчитав приближенную статистику J* для большой выборки [4].
Вычислим величину:
J* = ( J – MJ ) /
Где MJ =
( N2 - ) , DJ = ( N2 ( 2N + 3 ) - ( 2nj + 3))В результате вычислений мы получаем значение J* = 5,9.
Вывод. Полученный результат превышает критическое значение, что позволяет отклонить гипотезу Н0, и принять гипотезу Н1. Таким образом мы подтверждается результат, полученный с помощью статистики J – влияние фактора в предложенных выборках упорядоченно.
§4.Вывод
Целью данной курсовой работы был анализ зависимости между УК в крови больных СКВ и степенью тяжести поражения почек. Исходные данные были подвергнуты методам статистического анализа, независимым между собой. Результатом является доказательство наличия зависимости УК в крови больных СКВ и степенью тяжести поражения почек в каждом из использованных методов, что позволяет сформулировать окончательный вывод : УК в крови больных СКВ зависит от степени тяжести поражения почек, причем УК уменьшается с возрастанием степени тяжести поражения почек.
§5. Список литературы
1. Гублер Е.В. Информатика в патологии, клинической медицине и педиатрии. –Л.: Медицина, 1990.-176с.
2. Кузин Ф.А. Кандидатская диссертация . Методика написания, правила оформления и порядок защиты. Практическое пособие для аспирантов и соискателей ученой степени. –5-е изд., доп.-М.:Ось 89, 2000.-224с.
3. Энциклопедический словарь медицинских терминов: В 3-х томах. Около 60000 терминов.-М.: Советская энциклопедия, - Т.2. 1983.-448с.
4. Тюрин Ю.Н. , Макаров А.А. Статистический анализ данных на компьютере .-М.: Инфра – М., 1982.-528с.
5. Холлендер М., Вулф Д.А. Непараметрические методы статистики.-М.: Финансы и статистика., 1983.-518с.
6. Поллард Дж. Справочник по вычислительным методам статистики.-М.: Финансы и статистика., 1982.-344с.
7. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Исследование зависимостей.-М.: Финансы и статистика,-Т.2. 1985.-488с.
8. Шишкин В.И., Кудрявцева Г.В. Регуляторная роль функциональной системы "Комплемент – простагландиды – пентозофосфатный путь обмена углеводов" в патогенезе основных ревматологических заболеваний.-СПб.: НИИХ. 2002.-38с.
9. Колмогоров А.Н. Теория вероятности и математическая статистика.-М.:Наука.,1986.-535с.
10. Фишер Р.А. Статистические методы для исследователей.-М.:Госстатиздат.,1982.-344с.
11. Фишер Ф.П., Суиндл Д.Ф. Системы программирования.-М.:Статистика.,1971.-606с.