Смекни!
smekni.com

Анализ зависимости между уровня комплемента в крови больных системной красной волчанкой и степен (стр. 1 из 4)

Санкт-Петербургский Государственный Университет

Факультет прикладной математики – процессов управления

Кафедра диагностики функциональных систем

Анализ зависимости между УК в крови больных СКВ и степенью тяжести поражения почек

Курсовая работа

Варламова

Александра

Александровна

Научный руководитель

доктор медицинских наук, профессор Шишкин В.И.

Санкт-Петербург 2008


Содержание

§1. Введение

§2. Постановка задачи

§3. Используемые методы

1. Дисперсионный анализ по одному признаку для проверки равенства нескольких средних

2. Непараметрический дисперсионный анализ по одному признаку с применением критерия Краскала-Уоллиса для нескольких независимых выборок

3. Непараметрический дисперсионный анализ по одному признаку с применением критерия Джонкхиера для нескольких выборок, упорядоченных по возрастанию влияния фактора

§4.Вывод

§5. Список литературы


§1. Введение

Формулировка проблемы

Изложим проблемную ситуацию, имеющую место в настоящее время в решении задач обработки результатов исследований. Известно, что в распоряжении исследователей имеется большая и постоянно растущая в объеме база данных результатов измерений из разных областей естествознания: астрономии, экспериментальной физики, экономики, биологии, медицины.

По мнению автора, сформировавшемуся вследствии ознакомления с содержанием официальных высказываний ведущих политиков и ученых мира, наибольшего развития в 21 веке среди других наук достигнут биология и медицина. Известно и напечатано, например, в книге Е.В. Гублера "Информатика в патологии, клинической медицине и педиатрии" [1] , что в этом аспекте решение задач обработки результатов измерений приобретает ключевое значение . Следуя рекомендациям пособия "Кандидатская диссертация" [2] выполним критический анализ ситуации, сложившейся в настоящее время в России в решении задач обработки результатов наблюдений. Уже на предварительном этапе исследования имеет место противоречивая ситуация: с одной стороны – обработка найденных в медицине результатов измерений является актуальной задачей в современной науке, с другой стороны – известно, что в медицинских ВУЗах математика, как дисциплина учебного процесса , практически не изучается. Следовательно, то что методы обработки данных медицинских исследований стали предоставляться математикам-специалистам, создает прецедент выдвижения медицины в число приоритетных направлений Российской науки.

Изложив проблемную ситуацию, перейдем к определению цели и объекта исследования.

§2. Постановка задачи

Предварительные замечания

Системные заболевания соединительной ткани, такие как системная красная волчанка , характеризуются прежде всего выраженной патологией по иммунологической компоненте. Мониторинг этого контингента больных позволяет отнести системные заболевания к числу крайне тяжелых недугов, поражающих людей в наиболее деятельный возрастной период ( в среднем 30-50 лет )[8] и приводящих к ранней инвалидизации, а порой и к летальным исходам. Усиливающееся год от года неблагоприятное воздействие окружающей среды приводит к росту иммунодефицитов различной этиологии, в том числе возрастает заболеваемость системными вариантами иммунокомплексных патологий.

В иммунокомплексных патологиях система комплемента играет важную, хотя и не всегда ясную, роль. Таким образом изучение динамики комплемента приобретает ключевое теоретическое и практическое значение. В связи с этим нами предпринят анализ зависимости уровня комплемента с тяжестью течения классического иммунокомплексного заболевания системной красной волчанкой.

Объект, предмет, цель и задача исследования

В качестве исходных данных для исследования даны выборки численных значений медико-биологических показателей человеческого организма, а именно: уровня комплемента в крови больных системной красной волчанкой ( в дальнейшем – СКВ) и степенью тяжести поражения почек. . В целях полноты изложения приведем необходимое определение : "Комплемент - система сывороточных белков, которая активируется комплексом антиген - антитело с образованием биологически-активных веществ, способных вызывать необратимые повреждения клеточных мембран. Комплемент является одним из факторов естественного иммунитета и широко применяется в диагностических иммунологических реакциях."[3, ст. 57]

Объектом нашего исследования являлись выборочные данные результатов измерений уровня комплемента ( в дальнейшем - УК), причем изучаемые данные представляют собой пять столбцов чисел ,в первом из которых представлены данные без нефрита, во втором с нефритом слабовыраженным, в третьем с нефритом средней выраженности, в четвертом с нефротическим синдром, а в пятом- с почечной недостаточностью.

Предмет исследования определяем, как нахождение зависимости УК в крови больных СКВ и степенью тяжести поражения почек.


§3. Используемые методы

Будем использовать методы биометрического анализа, основанные на проверке гипотез однородности выборок.[9]

1. Дисперсионный анализ по одному признаку для проверки равенства нескольких средних

Во многих случаях практики интерес представляет вопрос о том, в какой мере существенно влияние того или иного фактора на рассматриваемый признак [9]. В данном случае фактором является степень поражения почек, а признаком - УК.

Научное обоснованное решение подобной задачи при некоторых предположениях составляет предмет дисперсионного анализа , введенного математиком- статистиком Р. А. Фишером.[10]

Статистическая модель

Выборки производятся из нормальных совокупностей. Первая выборка производиться из совокупности со средним

, вторая - со средним
, k-я из совокупности со средним
. Все наблюдения независимы. Будем считать распределение данной мне совокупности нормальным.

Гипотезы №1.

Н0 :

=
=…=

Н1: не все средние равны. все средние равны.

Критическая область.

Верхняя 5%-ная область Fk-1.N-k -распределения. В нашем случае F4,474 -распределения, так как k=4, а

=n1 + n2 + n3 + n4 + n5 =479. Эта область определяется неравенством F>2.37. ( Определяется по таблице, см. Таблица А.4а на стр. 334 "Справочника по вычислительным методам статистики" Дж. Поллард [6] )

Вычисление значения критериальной статистики

Будем рассматривать исходные данные, представленные Таблицей №1.

Таблица №1. Значения УК в зависимости от тяжести ГН.

.Нет нефрита

Выборка объемаn1= 210

Слабый нефрит

Выборка объема n2= 101
Средний нефритВыборка объема n3= 98 Нефротический синдромВыборка объемаn4 = 45 Почечная недостаточностьВыборка объемаn5 = 25
36 11 7 10 20
38 35 27 5 20
40 37 6 6 21
31 15 5 15 24
33 40 40 20 3
33,8 0 5 25 12
37 33 45 28 10
38 33 45 32 0
33 5 46 46 18,2
37 40 45 33 46
48 25 24 44 10
40 33 24 25 0
42 50 43 22,5 20
35 25 24,5 24,5 30,4
15 20 20,5 38 0
35 50 9 12 33,3
48 50 12 54,7 14,7
45 18 32 20,7 34,1
38 20 43 0 22,4
15 33 35,5 26,1 17,8
13 43 44 11 33,5
40 10 50 11,7 29,6
40 12 34 34,4 13,6
38 23 12 0 35
32,7 34 0 0 37
60 30 25,1 42
50 35 22,5 32,3
51 22 31 16
45 22,2 33 32,5
25 20 41,9 39,3
33 21 41,7 40,2
33 22 37,1 0
39 10 33,4 39,1
35,8 37,4 33 37,7
41,7 22,4 34,3 33,5
38,2 35 33 43,8
37,4 37,3 36,9 16
10 39,6 41 16
37,9 0 33 31
39,3 32,8 32,15 52
37,2 24 38,8 51
37,8 25 48,1 33,5
49,1 38 0 48
36,15 29 0 27
43,8 32 26,6 48
40 32 52,8
40 20 27
36 32,3 13,6
45 10 10
43,5 33,9 19,5
35 45,74 51,2
35 0 40,4
19,5 49,1 46,05
24,2 38 0
33 0 25,2
40,4 43,5 28
30 32,3 27
36 41 35
10 40 29
25 29,7 50
30 30 20
32 27,6 0
31 21,4 15,6
45 23 35
20 34,3 0
45 18 46
15 50,4 59,2
30,4 48,2 0
50 37,3 22,5
46 35 0
35 25 24
15 20 45
18 38 28,9
28 47,5 30,5
36,7 37,9 45,5
47,8 40,3 43
39,2 60 34,7
36,5 34,1 32,6
32 46,7 38,4
45,7 39 37,15
46,9 31,4 39
15,6 32 52,15
34,1 42 52,2
44,7 43,8 0
26,5 39,1 0
36,6 16 0
30,3 26,5 33
47 43 43
50 36,9 46,6
52,2 29,4 59,3
38,5 30,6 0
41 35,6 15,5
40 38,7 21,2
45 38,2 22,8
25,5 26,1 28,3
27,7 43,2 28,15
22,5 46 38,5
45 35,6 26
33 32,4
48,3 50
47,5 50
32
50
35,6
33,5
56,9
28,9
40
35,2
42,5
50
46,2
52,7
49,1
38
33,7
32,6
30
28,9
44,4
48,2
38,15
42
28,4
33,5
39,4
38,6
34,3
37,7
27,3
39,2
29,2
39,2
33,5
18
31,2
23,4
36,9
57,3
45
45,3
16,5
34,9
43,1
30,8
0
34,5
28
16
28,9
23
27
41,6
43,4
36
49
25
41,5
35,5
35
33,1
41,7
39,15
30,8
45,7
35,4
35,8
27
19,5
29,4
33,3
36,6
42,6
30
36,1
43
33,3
28,7
28,7
45,1
31,8
33
39,1
29
46,7
41,05
29,9
50
47
34,4
11
20,6
36,6
38,6
29,48
25
0
38
34,7
38,2
43,8
40,3
38,5
60
50
36
55
33,5
25,1
24,8
Всего:Т1=7502,38 Т2=3157,44 Т3=2819,55 Т4=1223,50 Т5=505,60

Т = Т1 + Т2 + Т3 + Т4 + Т5