Смекни!
smekni.com

Искусственное легкое (стр. 4 из 6)

4. Аппарат искусственной вентиляции легких.

4.1. Принцип работы аппарата искусственной вентиляции легких.

Аппарат состоит из рабочего блока, блока питания, блока управления и дополнительного оборудования (увлажнителя, блока дозиметров, отстой­ника конденсата), которые, с помощью дыхательных шлангов, включаются в дыхательный контур. Дыхательный контур аппарата нереверсивный, т.е. при выдохе смесь поступает через тройник пациента на клапан выдоха.

Так как при выдохе в дыхательном контуре смесь охлаждается, то пре­дусмотрен отстойник для сбора конденсата.

Рабочий блок обеспечивает формирование газового потока и состоит из воздушного компрессора и системы газораспределительных электромагнит­ных клапанов (клапан вдоха и клапан выдоха). Для контроля текущего и среднего значения давления установлены два манометра, показывающие значения давления в тройнике пациента и среднее давление.

Для предотвращения разрыва легких, в случае превышения давления дыхательной смеси выше допустимого предусмотрен предохранительный клапан, который, если давление выше допустимого, открывается и страв­ливает избыток давления.

Блок управления состоит из двух модулей:

- процессорный модуль;

- модуль индикации и клавиатуры.

Процессорный модуль обеспечивает управление режимами работы ап­парата, а также осуществляет управление работой увлажнителя и системы аврийно-предупредительной сигнализации.

Модуль индикации и клавиатуры обеспечивает ввод параметров ИВЛ, выбор режимов ИВЛ и обеспечивает отображение установленных парамет­ров.

Увлажнитель предназначен для подогрева и увлажнения дыхательной смеси. Увлажнитель состоит из следующих составных частей:

- блок подогрева воды в емкости увлажнителя;

- блок подогрева дыхательного газа в шланге вдоха;

- блока датчика температуры газа перед тройником пациента.

В качестве дыхательной смеси в аппарате ИВЛ используется либо ат­мосферный воздух, либо смесь воздуха с кислородом, либо смесь воздуха с закисью азота N2О. В ряде случаев при ИВЛ необходима длительная и ста­бильная анальгезия. Эффективным средством является закись азота, для по­дачи которой предусмотрен специальный ротаметр на дозиметрическом блоке. Баллоны с закисью азота либо с кислородом подключаются к аппарату через блок дозиметров, что дает возможность регулировать расход газа.

Компрессор создает требуемое давление вдоха и через клапан вдоха дыхательная смесь поступает на увлажнитель, где нагревается до темпера­туры тела человека и увлажняется. Если этого не делать, то при длительной вентиляции легких в организме больного могут произойти необратимые па­тологические изменения, а также это может привести к целому ряду заболе­ваний.

Увлажненная и нагретая смесь поступает через тройник пациента к больному. По завершению цикла вдоха клапан вдоха закрывается и откры­вается клапан выдоха, и давление в легких снижается до атмосферного.

Параметры дыхания устанавливаются и отображаются на блоке управ­ления, а также определяются программой управления микропроцессором и выбранным режимом работы аппарата.

Для контроля над параметрами дыхания используются датчик давления и датчик температуры у тройника пациента и датчик температуры в увлаж­нителе. Сигналы от датчиков поступают в устройство сопряжения с датчи­ками, а затем преобразованные сигналы выдаются в микропроцессор, рас­положенный в блоке управления.

Микропроцессор выдает сигналы управления, которые через схему управления исполнительными устройствами, выдаются на соответствующие исполнительные устройства (электропривод компрессора, клапан вдоха, клапан выдоха нагреватель в увлажнителе и нагреватель в шланге вдоха).

4.2. Медико-технические требования к аппарату ИВЛ.

Искусственная вентиляция легких является высокоэффективной и в то же время практически безопасной, если она основана на обеспе­чении адекватного газообмена при максимальном исключении вредных эффектов, а также при сохранении субъективного ощущения "дыха­тельного комфорта" у больного, если он во время ИВЛ остается в сознании.

Это обеспечивается прежде всего рациональным выбором для данного больного следующих параметров:

• минутного объема вентиляции;

• дыхательного объема;

• частоты дыхания;

• отношения продолжительности вдоха и выдоха.
Минутный объем вентиляции - это сумма дыхательных объемов за минуту. Обычно рассматривают минутный объем альвеолярной вен­тиляции, который равен разности дыхательного объема и общего объ­ема мертвого пространства, умноженной на частоту дыхания.

Дыхательный объем - это количество дыхательного газа, пода­ваемого в легкие в течении одного дыхательного цикла. Дыхательный объем должен быть достаточным для промывки "мертвого пространства " и удаления углекислого газа из легких . Зависит от пола пациента, массы его тела, частоты дыхания, возраста.

Частота дыхания - это количество дыхательных маневров (вдох-выдох) за минуту.

Значения основных параметров искусственной вентиляции легких нормированы ГОСТ 18856-81. Он устанавливает следующие минимальные диапазоны регулирования параметров ИВЛ:

- дыхательный объем 0,2 ... 2,0 л;

- минутная вентиляция 3 ... 30 л/мин;

- частота дыхания 10 ... 50 л/мин;

- отношение длительности вдоха и выдоха 1:1,5... 1:2.

Параметры ИВЛ у разных людей сильно отличаются, поэтому целесообразно делать диа­пазон регулирования параметров ИВЛ (дыхательный объем, минутную вентиляцию, частоту дыхания и т.д.) как можно шире, чтобы врач мог в каждом кон­кретном случае установить требуемые параметры ИВЛ.

Увеличение температуры и влажности вдыхаемого воздуха на пути окружающая среда - легкие происходит благодаря уникальной способно­сти дыхательных путей независимо от колебаний температуры и влажно­сти воздуха нагревать вдыхаемую газовую смесь до температуры тела и на­сыщать ее водяными парами.

При искусственной вентиляции легких возникает местное пересыхание и охлаждение слизистой оболочки трахеи и бронхов. В зависимости от продолжительности и интенсивности действия этих факторов могут воз­никнуть повреждения слизистой оболочки трахеи и бронхов, разрушение мерцательного эпителия, образование корок, нередко закупоривающих бронхи, возникновение деструктивного бронхита, чреватого тяжелыми бронхолегочными осложнениями. У маленьких детей к этому могут доба­виться нарушения общего водного и теплового баланса.

На основании изложенного выше при ИВЛ необходимо использовать увлажнитель для увлажнения и обогрева вдыхаемого газа. Границы регулирования температуры газа в тройнике пациента должны быть 32-38°С, а относительная влажность газа 80-100%.

При выдохе дыхательная смесь охлаждается, и влага конденсируется на поверхности дыхательных шлангов. Конденсат может попасть в аппарат, что нарушит его работу или в легкие пациента. Поэтому необходимо уста­новить на шланге выдоха отстойник, куда бы стекала конденсировавшаяся жидкость.

4.3. Схемы для подачи газовой смеси пациенту.

В настоящее время в аппаратах ИВЛ применяются следующие схемы для подачи газовой смеси пациенту.

1) Генератор вдоха постоянного потока с коммутирующими устройствами в линиях вдоха и выдоха, выполненный в виде смесителя сжатого кислорода, поступающего извне, и сжатого воздуха. В большинстве зарубежных аппаратов сжатый воздух также подается из внешнего источника (аппараты серий "Putitan-Bennet", "Веаг", большинство моделей фирм "Bird" “Drager” и др.) или поставляемым отдельно компрессором высокого давления. В отечественных аппаратах воздух подает встроенный в аппарат компрессор низкого давления. Такая схема позволяет достаточно легко реализовать разнообразные режимы работы и измерять характеристики вентиляции. Однако конструктивное осуществление этой схемы довольно сложно. Примером такого решения являются аппараты "Спирон-201","Фаза-5" и др.

2) Генератор вдоха постоянного потока с коммутирующим устройством только в линии выдоха. Здесь через линии вдоха газ течет постоянно, с частотой дыхания перекрывается только линия выдоха, поэтому конструкция таких аппаратов проще, чем по первой схеме. Особенно проста реализация режимов, требующих создания в линии выдоха постоянного подпора положительного давления (ПДКВ, самостоятельное дыхание под положительным давлением и др.). Конструктивная форма выполнения генератора вдоха такая же, что и для предыдущей схемы. Постоянный поток газа через дыхательный контур с одной стороны позволяет легче контролировать его величину и подаваёмую минутную вентиляцию, а с другой - вызывает повышенный расход газовой смеси, затрудняет измерение выдыхаемого объема. Поэтому данный принцип используется почти исключительно в аппаратах для интенсивной терапии у детей (например, в аппарате "Спиро-Вита-412"), где повышенный расход кислорода незначителен по абсолютной величине.

Описанные выше схемы ориентированы на подачу определенного потока или объема газа, а создающееся при этом в дыхательном контуре давление вторично. Существует, однако, схема, первично ориентированная на создание заданного давления. Ее основу составляет емкость с регулируемой эластичностью, в которую газовая смесь подается постоянно, а отбирается только во время вдоха. Принципиальное преимущество - возможность накопления газа, из-за чего мгновенное значение подачи газа всегда равно минутной вентиляции, но не превышает ее, как в других схемах. Пример реализации - аппараты семейства " Servoventilator - 900 фирмы "Siemens".

Также существует другой способ искусственного насыщения крови кислородом.

5. Аппарат искусственного кровообращения.

Аппарат "искусственное сердце - легкие" - аппарат, обеспечивающий оптимальный уровень кровообращения и обменных процессов в организме больного или в изолированном органе донора; предназначен для временного выполнения функций сердца и лёгких. На основании предшествующих многочисленных работ первый аппарат для искусственного кровообращения теплокровного организма, так называемый автожектор, был создан в 1925 советским учёным С. С. Брюхоненко при помощи этого аппарата советский учёный Н. Н. Теребинский в 1930 экспериментально доказал возможность успешной операции на клапанах сердца. В 1951 итальянские хирурги А. Дольотти и А. Костантини выполнили операцию удаления опухоли средостения, используя АИК. В СССР первую операцию на "сухом" сердце с помощью АИК осуществил в 1957 А.А.Вишневский. АИК включает комплекс взаимосвязанных систем и блоков: "искусственное сердце" — аппарат, состоящий из насоса, привода, передачи и нагнетающий кровь с необходимой для жизнеобеспечения объёмной скоростью кровотока; "искусственные лёгкие" — газообменное устройство, так называемый оксигенатор, служит для насыщения крови кислородом, удаления углекислого газа и поддержания кислотно-щелочного равновесия в физиологических пределах. Первые оксигенаторы, которые использовались в пятидесятых годах двадцатого века, были сделаны из стекла и стали, использовались многократно и работали на принципе прямого смешения крови и кислорода. Все это приводило к существенным повреждениям крови и развитию осложнений. Современные оксигенаторы, подобно нормальным легким, разделяют кровь и воздух при помощи мембраны. Эти одноразовые устройства предельно надежны и обеспечивают полную безопасность пациентам.