Смекни!
smekni.com

Метод и система адаптивної лазерної терапії (стр. 2 из 5)

Публікації. За результатами досліджень опубліковано 18 наукових праць, у тому числі 5 статей у фахових наукових виданнях внесених до переліку ВАК України та 5 патентів України.

Структура дисертації. Дисертація складається з вступу, чотирьох розділів, висновків, списку використаних джерел та 6 додатків. Загальний обсяг дисертації 152 сторінок, з яких основний зміст викладено на 130 сторінках, містить 36 рисунків, 3 таблиці. Список використаних джерел складається з 62 найменувань.

основний зміст роботи

У вступі обґрунтована актуальність проблеми досліджень, вказано зв’язок роботи з науковими програмами. Зазначено мету та задачі досліджень. Наведено характеристику наукової новизни та практичного значення отриманих результатів, а також їх впровадження та апробації.

У першому розділі зазначена структура та оптичні властивості біологічної тканини, описані механізми взаємодії лазерного випромінювання (ЛВ) з біологічною тканиною. Проаналізовані існуючі моделі поширення оптичного випромінювання в біологічних тканинах. На основі розгляду теоретичних та експериментальних методів розв’язання рівняння переносу випромінювання показана необхідність дослідження оптичних характеристик біологічних тканин для точної дозованої дії ЛВ. Розглянуті сучасні реалізації апаратів лазерної терапії, їх основні технічні характеристики, визначені їх недоліки та сформульований загальний підхід до розробки вдосконалених засобів ЛТ.

Розглянуто основні параметри, які описують оптичні властивості БТ: коефіцієнти поглинання, розсіяння, затухання, середня довжина вільного пробігу, альбедо, фазова функція розсіяння. Показано, що пошук зазначених параметрів лежить в площині розв’язання рівняння переносу випромінювання (РПВ), розв’язок якого можливий двома групами методів: теоретичними (метод усереднення інтенсивності за напрямками; метод послідовних наближень; метод заміни РПВ системою диференціальних рівнянь; асимптотичний метод; методи статистичного моделювання; числові методи) та експериментальними (метод інтегруючої сфери (МІС) способом Тейлора або способом Рвачова-Сахновського; метод дифузного відбиття; метод визначення параметрів Стокса; спектроскопія з високою часовою роздільною здатністю; модуляційний метод; стаціонарний метод із просторовою роздільною здатністю).

Показано, що теоретичні методи є надскладними у розв’язанні та виборі граничних умов. Тому найбільше поширення віднайшли експериментальні методи дослідження основних параметрів, котрі характеризують оптичні властивості БТ, на підставі реєстрації дифузного відбиття БТ з використанням інтегруючих порожнин.

Проаналізовано переважний спектр засобів для ЛТ, які застосовуються, і виділено за головний недолік відсутність біологічного зворотного зв’язку, що не дозволяє відстежувати функціональний стан організмі пацієнта під впливом ЛТ, а відтак здійснювати адаптивний механізм корегування режимами опромінювання.

Оскільки при ЛТ вплив здійснюється на живий об’єкт, то окрім фізико-хімічних проявів світлового випромінювання необхідно враховувати вплив світла на функціонування живої матерії, що визначається ступенем гомеостазу живого об’єкта. Випромінювання малої інтенсивності не запускає адаптаційні механізми біологічної системи, тобто не порушується її гомеостаз. При невеликому збільшенні інтенсивності відбуваються лише збурення локального гомеостазу, і не у кожних дослідженнях вони виявляються. Ріст інтенсивності вмикає загальні адаптаційні і регуляційні механізми живого об’єкта, які цілком відновлюють систему. При подальшому збільшенні інтенсивності відбуваються частково необоротні процеси. Це дозволяє визначити перспективний напрямок досліджень впливу низькоінтенсивного ЛВ на біологічну тканину, а також спостереженні реакції БТ на такий вплив за декількома параметрами.

У другому розділі запропонований метод лазерної терапії, розглянуті аналітичні та математичні моделі чутників власних та стимульованих електромагнітних полів, а також запропонована модель поширення лазерного випромінювання в біологічній тканинні та схема функціонування системи адаптивної ЛТ.

Сутність запропонованого методу полягає у визначенні оптичних характеристик БТ обраної ділянки біологічного об’єкту (БО) з одночасним запам’ятовуванням для подальшого плинного порівняння з наступними значеннями сигналів в реальному масштабі часу. Це дає можливість визначати характер впливу ЛВ на БТ, при цьому можна визначати небажаний стан та запобігти продовженню опромінювання. По-друге, оскільки БО властива наявність біологічно активних точок, що в основному реагують на зміни електричних і магнітних властивостей навколишнього середовища, то меридіани, які з’єднують активні точки, можна розглядати як систему електричних провідників, що прокладені в БТ, існуючої поблизу м’язів, судин, нервів, по яким рухомі електричні заряди (електроліти, молекули) можуть мігрувати від одної області до іншої. Ця система залучена до електромагнітних взаємодій в організмі і до рецепції зовнішніх електромагнітних полів. Тому окремі порушення в функціонуванні системи можна усунути електромагнітною стимуляцією активних зон, специфічних до регуляції цього процесу. Стимуляція БТ супроводжується змінами електричних потенціалів (зміною напруженості електромагнітного поля) вздовж шляхів, що описують як меридіани, причому поширення такої різниці потенціалів між меридіанами потребує більшого часу, ніж зміна фізіологічної активності органа, який має на увазі поширення по шляхам, котрі мають меншу швидкість проведення, ніж поширення збудження по чутливим волокнам.

Отже, метод адаптивної лазерної терапії полягає у виконанні наступної послідовності заходів:

1) вибір ділянки БТ, яку будуть опромінювати. При здійсненні акупунктурної лазерної терапії вибір біологічно активних точок здійснюють у відповідності до атласу біологічно активних точок (БАТ) людини;

2) підготовка обраної поверхні БТ до процедури лазерної терапії, що полягає у звільненні поверхні від волосяного покрову для нівелювання явищ світлорозсіювання на волоссі, та очищенні від вологи, забруднень тощо;

3) визначення значення напруженості електромагнітного поля на ділянці БТ, яку будуть опромінювати;

4) опромінення лазерним пучком БТ; спостереження та аналіз параметрів дифузно розсіяного оптичного випромінювання та/або напруженості електромагнітного поля в БТ;

5) Прийняття рішення про продовження, закінчення або зміну режиму лазерної терапії. Визначення оптичних характеристик БТ та значень напруженості електромагнітного поля в БТ з одночасним запам’ятовуванням для подальшого плинного порівняння з наступними значеннями сигналів в реальному масштабі часу. Це дає можливість відслідковувати режими ЛТ, визначати небажаний стан та запобігти продовженню опромінювання. Таким чином визначають дотримання вірних режимів відповідно до заданої дози опромінювання.

Для з’ясування механізму функціонування системи ЛТ розглянуто аналітичні моделі чутників електромагнітного випромінювання, комплексна дія яких лежить в основі запропонованого методу.

Для визначення параметрів випромінювання БТ використовується чутник на засадах закону електромагнітної індукції, тобто наведеної електрорушійної сили (ЕРС) в обмотці за рахунок змінного магнітного поля, утвореного електричним струмом. Первинний електромагнітний чутник конструктивно являє собою кільцеве або прямокутне замкнуте осереддя з феромагнітного матеріалу з обмоткою з мідного провідника.

Передатна функція чутника має такий вигляд:

(1)

деk - коефіцієнт трансформації чутника;

L - індуктивність обмотки у Гн;

T1, T2 - сталі часу чутника;

S - площа перетину осердя з феромагнітного матеріалу;

r - радіус осердя;

w - кількість витків провідника в обмотці;

Rн - активна частина опору навантаги;

Cн - ємність навантаги;

R0 - активна частина опору обмотки;

мм - магнітна проникність матеріалу осердя.

Проведено аналіз існуючих моделей поширення оптичного випромінювання в біологічній тканині: проста експоненціальна, міграційна та інтегральна. До основного недоліку таких моделей відносять неможливість аналізу оптичних характеристик багатошарових біологічної тканини. Тому запропонована і розроблена експоненціальна модель, котра моделює поширення оптичного випромінювання в біологічній тканині - багатошаровому середовищі, яке містить чотири складові: роговий шар (шар 1), епідерміс (шар 2), дерму (шар 3) та жирову тканину (шар 4). Світло падає на шар 1 біологічної тканини в точці x0 і після декількох розсіювань на поглинаючих частках частина падаючого світла виходить з тканини, як дифузно відбита в точці x1., інша частина на межі шарів 1 та 2 заломлюється і переходить в шар 2. Аналогічна ситуація спостерігається і надалі при поширені випромінювання в чотирьох шарах. Зауважимо, що жирова тканина моделюється як гомогенне напівнескінчене мутне середовище. Лінія описує "класичний шлях" або "най вірогідніший шлях" світла.

Обчислення Rt від багатошарового мутного середовища ведеться при умові, згідно якої падаюче і розсіяне назад світло затухає експоненціально відповідно до суми коефіцієнтів поглинання і розсіяння відповідно, (1

у конкретному шарі.

Рис.2 Фізична картина процесу дифузного відбиття для складної експоненціальної моделі.

Коефіцієнт дифузного відбиття і-го шару розраховується як:

1

1

. (2)