Смекни!
smekni.com

Технология изготовления эмульсий в аптечных условиях (стр. 3 из 8)

Кроме природы эмульгаторов, на стабильность эмульсий влияет ряд других факторов. В первую очередь, это природа дисперсионной среды и масляной фазы. Природа и полярность масляной фазы влияет на эмульгирующую способность ПАВ и стабильность эмульсий. Так, эмульсии, дисперсная фаза которых состоит из длинноцепочечных алканов или хотя бы содержит их в небольшом количестве, более устойчивы, чем эмульсии, содержащие короткоцепочечные алканы. Эмульсии с растительными маслами менее стабильны, чем с минеральными.[1]

Соотношение между маслом, водой и ПАВ сильно влияет на свойства эмульсий: их тип, реологические параметры и стабильность. При определенных соотношениях между ингредиентами эмульсий образуются так называемые микроэмульсии. Это прозрачные системы, содержащие сферические агрегаты масла или воды, диспергированные в другой жидкости и стабилизированные поверхностным натяжением пленок ПАВ, причем диаметры капель находятся в интервале от 10 до 200 нм. Микроэмульсии в отличие от обычных эмульсий являются термодинамическими стабильными системами и могут храниться годами. На стабильность эмульсий м/в влияет способ их приготовления. Для повышения их стабильности рекомендуется метод инверсии фаз. Оба эмульгатора при -75 °С сплавляют с масляной фазой, добавляют часть горячей воды и эмульгируют, получая при этом эмульсию в/м. Затем приливают остальную воду, происходит инверсия фаз; эмульгирование продолжают, охлаждая эмульсию до 25 ° С.

Из технологических приемов, влияющих на структурно-механические параметры лиофобных вязкопластичных эмульсий, можно рекомендовать способ введения эмульгаторов. Наиболее вязкие и структурированные эмульсии получаются при диспергировании эмульгатора м/в и высших жирных спиртов в водной среде при 70-75 °С с последующим введением масляной фазы при 60 °С, эмульгированием и охлаждением эмульсии при перемешивании до 20-25 °С.

Размер капелек дисперсной фазы зависит от величины снижения поверхностного натяжения на границе раздела фаз и величины энергии, затраченной на измельчение частиц дисперсной фазы. Особенно большую устойчивость эмульсии получают в результате гомогенизации, т. е. при дополнительном энергичном механическом воздействии на готовую эмульсию. При гомогенизации не только повышается дисперсность эмульсии; последняя становится монодисперсной, что значительно повышает ее устойчивость.[1]

2.3. ЭМУЛЬГАТОРЫ

Эмульгаторами называются вещества, препятствующие слиянию шариков дисперсной фазы и способные превратить неустойчивую эмульсию в относительно устойчивую систему.

Требования к эмульгаторам

Эффективность эмульгаторов определяется степенью дисперсности, которую они способны придать диспергируемой жидкости, и тем минимальным количеством, которое является достаточным для покрытия адсорбционным слоем всей поверхности дисперсной фазы. Немаловажное значение при оценке эмульгаторов имеют также их доступность, размер ресурсов и стоимость. Обязательным условием для использования вещества в качестве эмульгатора в составе лекарственных форм является его фармакологическая безвредность.

При выборе эмульгаторов для фармацевтических эмульсий необходимо учитывать механизм их стабилизации, токсичность, величину рН, химическую совместимость с лекарственными веществами.

Для изготовления эмульсий для внутреннего применения необходимо использовать эмульгаторы, не обладающие неприятным вкусом, что ограничивает применение большинства синтетических ПАВ. Эмульгаторы, используемые для получения парентеральных эмульсий, не должны обладать гемолитическими свойствами.

Для стабилизации эмульсий эмульгаторы используют в широком диапазоне концентраций (0,1 – 25%). Современные эмульгаторы, используемые для изготовления эмульсий, представлены в таблице 2.[2]


Таблица 2

Наиболее перспективные эмульгаторы

для приготовления фармацевтических эмульсий

[И.М. Перцев, И.А. Зупанец, 1999]

Эмульгатор Характеристика ГЛБ Примечание
1 2 3 4
Лецитин Амфолитный эмульгатор первого рода Рекомендуется для стабилизации эмульсий типа м/в для парентерального введения
МГД (моноглицериды дистиллированные) и МД (смесь моно- и диглицеридов высших жирных кислот) Эмульгаторы второго рода Рекомендуются для получения вязкопластичных эмульсий типа в/м
Натрия додецил сульфат Анионоактивный эмульгатор м/в 40
Пентол Эмульгатор второго рода 4,1 Совместно с эмульгатором первого рода рекомендуется для получения высокодисперсных самоэмульгирующихся систем типа м/в и в/м
Препарат ОС – 20 Неионогенный эмульгатор первого рода 13,4
Спирты синтетические жирные фракции С16 – С21 Эмульгатор второго рода 0,21 Совместно с эмульгатором первого рода рекомендуется для получения вязкопластичных систем типа м/в в производстве мягких лекарственных форм
Твин – 80 Неионогенный эмульгатор первого рода 14,6
1 2 3 4
Эмульгатор Т – 2 Эмульгатор второго рода 5,5 Совместно с эмульгатором первого рода рекомендуется для получения высокодисперсных самоэмульгирующихся и вязкопластичных эмульсий типа м/в и в/м
Эмульгатор № 1 Комплексный эмульгатор Рекомендуется для получения вязкопластичных эмульсий типа м/в
Эмульсионные воски Комплексный эмульгатор Рекомендуется для получения вязкопластичных эмульсий типа м/в

Классификации эмульгаторов

Классификации эмульгаторов основаны на различных признаках.

1. По способности стабилизировать эмульсии типа м/в или в/м эмульгаторы можно разделить на эмульгаторы первого (м/в) и второго (в/м) рода.

2. По химической природе эмульгаторы делятся на три класса: вещества с дифильным строением молекул, высокомолекулярные соединения, неорганические вещества.

3. По способу получения выделяют синтетические, полусинтетические и природные (животного, растительного и микробного происхождения) эмульгаторы.

4. По молекулярной массе эмульгаторы можно разделить также на низкомолекулярные и высокомолекулярные. К высокомолекулярным относят желатин, белки, поливиниловые спирты, полисахариды растительного и микробного происхождения, жиросахара, пектиновые вещества, ультраамилопектин, камеди, глицерин, производные целлюлозы и др. На поверхности раздела фаз они образуют трехмерную сетку с определенными параметрами и стабилизируют эмульсии за счет создания структурно-механического барьера в объеме дисперсионной среды. Данные эмульгаторы получили название «загустители». Наибольшее значение в качестве эмульгаторов имеют низкомолекулярные ПАВ.

5. По способности к ионизации в воде их можно разделить на три класса: ионогенные (анионные, катионные), неионогенные и амфолитные. Данные эмульгаторы получили название «стабилизаторы».[13]

Гидрофильно-липофильный баланс (ГЛБ)

Гидрофильно-липофильный баланс (ГЛБ) – это соотношение двух противоположных групп молекул – гидрофильной и гидрофобной (липофильной) в эмульгаторе.

Для определения ГЛБ пользуются предложенной Гриффином (GriffinW. C., 1949) полуэмпирической системой, позволяющей количественно оценить и выразить в виде условных групповых чисел степень взаимодействия с водой отдельных групп, из которых состоит ПАВ.

Числа ГЛБ различных ПАВ вычисляются по специальным формулам как сумма групповых чисел или определены экспериментально. Чем больше в молекуле ПАВ превалирует гидрофильная часть над гидрофобной, иначе говоря, чем больше баланс сдвинут в сторону гидрофильности, тем выше число ГЛБ. Числа ГЛБ для всех известных ПАВ составляют шкалу («шкала Гриффина») от 1 до 40. Число 10 является приближенной границей между гидрофильными и липофильными ПАВ. Маслорастворимые эмульгаторы, образующие эмульсии типа В/М, характеризуются числами ГЛБ ниже 10. Чем выше число ГЛБ, тем больше склонность к образованию эмульсии типа М/В.

Шкала ГЛБ, которая служит в основном для выбора эмульгатора, имеет значение и для определения ПАВ другого назначения (таблица 3).[3]

Таблица 3

Значение чисел ГЛБ и применение ПАВ

[Ю.А. Кошелев, 1996]

Значение ГЛБ Растворимость в воде Применение
0-3 Не диспергируются Пеногасители
3-6 Диспергируются плохо Эмульгаторы типа В/М
Значение ГЛБ Растворимость в воде Применение
6-9 Диспергируются плохо Смачиватели (моющие средства)
9-13 Мутная дисперсия Эмульгаторы типа М/В
13-15 Образуют полупрозрачный раствор Пенообразователи
15-20 Образуют прозрачный раствор Солюбилизаторы

Методы определения ГЛБ можно разделить на расчетные, базирующиеся на молекулярной структуре ПАВ, и экспериментальные, основанные на измерении каких-либо свойств ПАВ, связанных с их ГЛБ, позволяющих его вычислить. Из расчетных методов рекомендуется метод Дэвиса, согласно которому различные функциональные группы и сочетания атомов, входящие в молекулы ПАВ, имеют определенные гидрофильные коэффиценты «групповые числа» (таблица 4). Они положительны для гидрофильных групп и отрицательны для липофильных.

Таблица 4

Групповые числа ГЛБ поверхностно-активных веществ

[И.М. Перцев, И.А. Зупанец, 1999]

Гидрофильная

группа

Групповое число Липофильная группа Групповое число
- О4Na 38,7
- СООК 21,1
- СООNa 19,1 - СН2 -
Сульфонат 11,0 - СН3 - - 0,475
- N (третичный амин) 9,4 - СН -

Сложныйэфир

(сорбитановое кольцо)

Сложный эфир (свободный) 2,4 -(CН2-CH2-CH2-O-) - 0, 15
NCOOH 2,1
- ОН (свободная) 1,9
- О - 1,3
- ОН (сорбитановое кольцо) 0,5
-(СН2-СН2-О-) 0,33

Система ГЛБ рекомендуется для оценки области применения ПАВ, их возможных свойств и организации поиска оптимальных эмульгирующих смесей. Суммарный ГЛБ смеси ПАВ рассчитывают по формуле: