Аппараты III поколения стали дальнейшим развитием системы сканирования. В этих моделях был применен вращательный тип движения сканирующей системы (см. рис. 1) с большим количеством детекторов. Томографы III поколения позволили сканировать все тело пациента и получили широкое распространение. (Они до настоящего времен iиспользуются во многих медицинских учреждениях). Однако имеются2 обстоятельства технического свойства, на которые следует обратить внимание. Прежде всего, необходимо отметить основной недостаток аппаратов III поколения: жесткое крепление системы рентгеновская трубка - блок детекторов, которое при сбое работы одного из детекторов (или в измерительном канале) проявляется на изображении в виде кольцевого артефакта, вызывая проблемы последующей визуализации объекта исследования. Все это послужило основанием для создана следующего - IV поколения компьютерных томографов.
В компьютерных томографах IV поколения используется принципиально новый вид технического решения системы рентгеновская трубка - детекторы. В этом случае детекторы неподвижно размещены по всей внутренней поверхности кольца, внутри которого вращается источник излучения. При этом количество детекторов составляет 4 тыс., а на некоторых моделях и 4,8 тыс. (фирма Picker, США), что позволяет добиться разрешения 22 пар линий/см. При этом при спиральном сканировании (об этом режиме речь пойдет далее. - Прим. авт.) на оборудовании этого производителя разрешающая способность аппаратов остается неизменной.
Большое количество детекторов позволяет обеспечить максимально плотное их размещение (минимизируя попадание излучения в промежутки между детекторами), что повышает эффективность использования источника излучения и снижает лучевую нагрузку на пациента. В аппаратах IV поколения цикл сканирования соответствует обороту рентгеновской Трубки (360°) с экспонированием от 1,0 до 0,25°, в результате чего собираются данные от 360 до 1440 проекционных профилей соответственно.
В V поколении компьютерных томографов источником электронов является электронная пушка. Поток электронов попадает на тормозные пластины, образуя рентгеновское излучение. Для визуализации изображения требуется 5 мл/с с последующей трехмерной реконструкцией. Апертура компьютерного томографа V поколения более 1 м, что позволяет укладывать пациента самым разным образом. Следует отметить, что во всем мире используется около 100 томографов V поколения -из-за высокой стоимости и сложности технического обслуживания широкого применения они не получили.
В настоящее время имеются два варианта КТ-сканирования - аксиальное и спиральное. На аппаратах II поколения возможно только аксиальное сканирование. Применение КТ-аппаратов последующих поколений позволяет использовать как аксиальное, так и спиральное сканирование. Различия между этими видами обработки информации заключаются в следующем.
При аксиальном сканировании получается такой вид изображения, который ограничивает качество последующей реконструкции.
Спиральное сканирование - новый этап в развитии КТ. В этом случае продуцируется один непрерывный массив информации, что дает новые возможности для последующей реконструкции изображения. (С каждого витка спирали можно получить множественные срезы. При этом параметры обработки данных можно выбрать до и после получения информации). Спиральное сканирование в отличие от аксиального осуществляется при непрерывном движении стола через поле сканирования, которое образует постоянно вращающаяся рентгеновская трубка.
Преимущества спирального типа сканирования: скорость проведения исследования, исключение пропуска информации между КТ-срезами, возможность синхронизировать КТ с введением большого объема контрастного препарата и выполнять исследования в разные промежутки времени после его введения. Особое внимание при получении изображения следует обратить на возможность использования в этом случае ещё одной или нескольких обработок «сырых» математических данных сканирования, для чего было введено новое понятие «индекс реконструкции» (толщина слоя, выделяемого из «сырых» данных компьютера). Если величина индекса реконструкции меньше толщины выделяемого КТ-слоя, восстанавливаемого из «сырых» данных, то происходит математическое наложение близлежащих периферических отделов КТ-срезов, что позволяет получить новую серию изображений высокогокачества той же области сканирования без риска для пациента, так как повторное сканирование (дополнительное облучение) отсутствует. Однако при этом значительно увеличивается количество реконструированных срезов, что увеличивает время анализа КТ-информации. Математическое наложение близлежащих слоев позволяет нивелировать зубчатые края контуров органов и тканей при построении качественных мультипланарных и трехмерных изображений.
Мультислайсовая КТ - последнее достижение в развитии методики сканирования: благодаря увеличению рядов детекторов за один оборот рентгеновской трубки можно получить до 320 срезов. С помощью мультислайсовой КТ также получают цифровое изображение поперечных срезов любого отдела тела человека, отражающее топографию органов и систем, а также локализацию, характер и стадии выявленных изменений, их взаимосвязи с окружающими структурами. При этом сохраняется эффективность спирального сканирования. Одним из достоинств мультислайсового способа сканирования является возможность последующих реконструкций с изменением величин толщины среза и шага стола томографа. Последующая реконструкция полученных при исследовании КТ-срезов дает полное представление об анатомо-топографических взаимоотношениях.
Мультислайсовый компьютерный томограф представляет собой сверхбыстрый вычислительный комплекс, позволяющий сократить до нескольких минут время самого сложного в методическом плане исследования. На аппарате этого класса при соответствующем анестезиологическом обеспечении можно обследовать детей в возрасте от одного года и старше. Ограничениями в данном случае являются лучевая нагрузка на пациента и разрешающая способность аппарата.
Для диагностики заболеваний легких мультислайсовая спиральная КТ особенно важна, позволяя оценивать узловые образования в легочной ткани: их размеры, объем, скорость роста. Автоматически и с высокой чувствительностью вычисляется время удвоения размера узла, а кроме того, выстраивается трехмерная модель узлового образования с выделением из сосудистых и плевральных структур, что дает представление о его наружном изображении.
Мультислайсовая спиральная КТ - незаменимая неинвазивная методика в кардиологии. С ее помощью получают изображения сердца в различные фазы, подсчитывают сердечные объемы, такие как фракция выброса левого желудочка, пиковая скорость выброса, диастолические объемы правого и левого желудочков, конечный диастолический и ударный объемы, а также толщину миокардиальной стенки, ее подвижность, массу миокарда и, кроме того, выполняют объемную реконструкцию наружного изображения сердца.
Следует отметить, что использование неионных контрастных препаратов в различной концентрации (ультравист, омнипак и т. д.) существенно повышает надежность и безопасность контрастных исследований при КТ.
Возможности мультислайсовой спиральной КТ свидетельствуют о том, что данная методика исследования позволяет по-новому осмыслить представления о роли КТ в диагностическом процессе. В первую очередь это обусловлено возможностями сканирования, которое практически исключает пропуск диагностически важной информации при поиске небольших по размеру патологических изменений, а также быстрого сканирования анатомически больших областей без потери качества. Пои этом необходимо подчеркнуть возможность малоинвазивного исследования сердечно-сосудистой системы с использованием болюсного внутрисосудистого введения контрастного вещества. К тому же данная КТ-методика позволяет получить и изучить данные о состоянии паренхиматозных органов и тканей в различные фазы (артериальную, венозную, смешанную) прохождения контрастного вещества по исследуемому органу, а также объединить полученные при КТ-исследовании данные в одно комбинированное изображение органов и тканей. Такое комбинированное изображение можно рассматривать в различных плоскостях (мультипланарная реконструкция), строить объемное трехмерное изображение, вращая его на экране монитора под любым углом вокруг оси.
С внедрением новых компьютерных методик становится возможным исследовать сердечно-сосудистую систему. Это позволяет быстро и качественно получить представление об анатомии сердца и сосудов в выбранной анатомической области: измерить ход, минимальный и максимальный диаметр, степень стеноза в процентном отношении и абсолютных величинах, его протяженность, а также осуществить планирование хирургического вмешательства и контроль за его эффективностью.
Благодаря наличию объемного пакета программного обеспечения в современных аппаратах стало реальным создание томограмм практически в любой плоскости. Трехмерная реконструкция КТ-данных, позволяет получить более детальное представление об анатомо-топографических взаимоотношениях органов и систем. С внедрением трехмерных изображений изучаемых органов и систем возрастают наглядность и Достоверность получаемых данных.
Примеры трёх различных компьютерных томографов для мелких животных
1 - рентгеновская трубка; 2 – поворачивающийся образец; 3 – детектор; 4 – ось вращения; 5 – конический луч; 6 – варьирующее увеличение; 7 – поворачивающийся гентри; 8 – мышиная кровать.