Настольный микро-КТ (A, B) с вращающейся моделью держателя, стационарным детектором области и микрофокусной рентгеновской трубкой, обеспечивающей усиленное излучение. Такая установка в основном используется для проведения лабораторных исследований. Хорошие результаты исследования зависят от оптимального соотношения между полем сканирования, чёткостью, хорошей фиксации животного к столу, при условии вращающегося гентри (C, D). Всё большие требования к пространственному разрешению, быстрому и более широкому сканированию исследуемого поля достигаются и отображаются на плоской панели детектора, крутящегося гентри со стационарным столом (E, F).
Таблица 1. Сравнение показателей микро-, мини- и клинических компьютерных томографов.
Микро-КТ | Мини-КТ | КлиническийКТ | |
Подходит для | Образцы тканей, насекомые, мыши, крысы | Мыши, крысы, кролики, приматы, мини-свиньи | До людей |
Пространственное разрешение (изотропное) | 5 мкм (одна конечность) - 100 мкм (целое животное) | 100 – 450 мкм | > 450 мкм (z-ось > 600 мкм) |
Осевое сканирование поля зрения | 1-5 см | 5-20 см | >20 см |
Время получения "стандартного" объёма (например, всего животного) | От нескольких секунд до нескольких часов (иногда наблюдается получение компьютерными томографами одного среза менее, чем за секунду) | От 0,5 секунды до нескольких секунд | Через несколько секунд (с вращением до 0,33 с) |
Доза радиации | > 1 Гр | ~ 10-500 мГр | <50 мГр |
Рисунок | Настольный, вращающийся образец (с изменением геометрии, резкости сканирования в поле зрения и т.д.) или вращающийся гентри | Вращающийся образец или вращающийся гентри (определённая геометрия) | Вращающийся гентри (определённая геометрия) |
Компенсирование сердечных и дыхательных движений | Ожидаемый запуск | Ожидаемый запуск, ретроспективный строб | Модуляция сканирования, ретроспективный строб |
Примеры цифр | Рис. (1) A, B, C, D, (3), (4) | Рис. (1) E, F, (2), (5), (6) |
Основы получения изображения
Компьютерно-томографическая диагностика основана на традиционных рентгенологических принципах работы, и важнейшими задачами, которые необходимо решить при проведении исследования, являются определение точной локализации, количества, формы и размеров патологических очагов, интенсивности их тени, четкости контуров, а также один из основных моментов - возможность математически точного определения коэффициента абсорбции (плотности) исследуемой ткани, отражающего величину поглощения пучка рентгеновского излучения при прохождении через тело человека. В зависимости от плотности каждая ткань по-разному поглощает рентгеновское излучение, и, соответственно, для каждой ткани имеется свой коэффициент абсорбции. Персональный компьютер выполняет математическую реконструкцию вычисленных коэффициентов абсорбции и их пространственное распределение на многоклеточной матрице с последующей трансформацией в виде изображения на экране дисплея. Картина воспроизводится на матрице, размеры которой зависят от конструкции аппарата (от 256 на аппарате SomatomCR фирмы Siemens до 1024 на аппарате PQ-6000 фирмы Picker) с соответствующей величиной клетки (пиксель). Увеличение матрицы наряду с увеличением количества детекторов, а также плотности их расстановки позволяет определить коэффициент абсорбции меньшего участка КТ-изображения. Коэффициенты абсорбции измеряются в относительных единицах по шкале плотностей, предложенной G. Hounsfield (рис. 2), известных как единицы Хаунсфилда (ед.Н).
Таким образом, компьютерный томограф обладает двумя видами разрешающей способности: пространственная (зависящая от размера клетки матрицы) и перепад плотности (порог чувствительности равен 5 ед.Н (0,5%).
Шкала плотностей позволяет сопоставлять коэффициент абсорбции различных тканей с поглощающей способностью воды, коэффициент абсорбции которой принят за 0. На практике положение центра окна устанавливают равным измеренному или ожидаемому среднему значению плотностей исследуемых структур в области интереса, а ширину окна - в соответствии с диапазоном плотностей исследуемых органов и тканей. Окно шириной в 256 значений градаций серого может быть размещено на любом участке шкалы плотностей путем произвольного выбора центра окна. Если значения чисел в матрице изображения пропорциональны значениям чисел Хаунсфилда в матрице реконструкции, то те участки экрана, которые отображают более плотные ткани, будут выглядеть светлее, чем рентгенологически менее плотные области. Соответственно, на экране монитора белым цветом будут отображаться наиболее рентгенологически плотные структуры, а более темным цветом - структуры, имеющие меньшую рентгенологическую плотность. Изменение плотностных характеристик органов и тканей на экране визуально будет восприниматься как изменение контрастности. Регулируя ширину окна, можно изменять изучаемый диапазон плотностей, что визуально будет восприниматься как изменение в контрастности изображения близких по значению плотности структур.
Следует отметить, что соотношение, предложенное G. Haunsfield, имеет простую физическую интерпретацию. В этой системе отсчета ед.Н воды равна 0, ед.Н воздуха равна -1000, а для самых плотных структур ед.Н составляют примерно 3000.
Диагностические возможности компьютерной томографии
Поданным литературы (2, 6, 8,11, 19, 24, 31, 48, 50, 53), чувствительность метода составляет от 80 до 95%, специфичность несколько ниже - 75-90% для различных патологических процессов.
Известны 2 типа ограничений диагностических возможностей рентгеновской КТ - объективные и субъективные.
К объективным ограничениям относятся:
1) малые размеры патологического очага, отсутствие градации плотностей между патологическими и неизмененными тканями;
2) атипичное течение патологического процесса при нетипичной КТ-картине.
Субъективные ограничения включают:
1) неверно выбранную тактику исследования;
2) ошибки, возникающие в результате неполноценной подготовки пациента к исследованию или из-за артефактов технического порядка, обусловленных подвижностью объекта исследования.
Лучевая нагрузка
Для качественной реконструкции необходимо выполнять десятки срезов. При этом сразу же встает вопрос о лучевой нагрузке на пациента, которая представляет собой величину эффективной дозы (Е). Эффективная доза - условное понятие, характеризующее дозу равномерного облучения всего тела, соответствующую риску появления отдаленных последствий при дозе реального неравномерного облучения определенного органа (или нескольких органов). Измеряется эффективна доза в зивертах (Зв).
В настоящее время дозовая нагрузка для жителя нашей страны при рентгенологических обследованиях составляет 2,5-3,0 мЗв в год, что 2-3 раза превышает уровень облучения в таких странах, как Англия Франция, Швеция, США, Япония (2, 17, 23).
Для качественной мультипланарной реконструкции необходимо делать десятки КТ-срезов, а значит, при выполнении исследования следует рассматривать все возникающие вопросы о лучевой нагрузке на пациента.
В Российском научном центре рентгенорадиологии Минздравсоцразвития РФ было проведено исследование дозовых нагрузок на пациентов при выполнении ряда рентгенологических процедур, включая КТ. По результатам проведенной работы (11, 39) было установлено, что К является наиболее щадящим методом рентгеновского исследования (табл. 1).
Необходимо подчеркнуть, что для рентгеновской КТ характерны локальность лучевой нагрузки и высокий уровень защиты других органов от рассеянного излучения. Кроме того, лучевая нагрузка, благодаря модернизации оборудования, уменьшается.
Таблица 1. Эффективные дозы при ряде компьютерно-томографических и
рентгенографических исследований
Исследуемая область | Компьютерная | Рентгенография, |
томография, мЗв | мкЗв | |
Голова | 0,4 | 50 |
Грудная клетка | 2,9 | 1000 |
Брюшная полость | 5,8 | 2000 |
Организация отделения компьютерной томографии
Штат отделения рентгеновской компьютерной томографии многопрофильной 600-коечной больницы, как правило, состоит из 6 человек (2 врача, 3 рентгенолаборанта и 1 инженер). По нашему опыту, этого числа специалистов вполне достаточно для эффективного функционирования подразделения.
Следует отметить, что штатное расписание кабинета РКТ регламентируется приказом Минздрава РСФСР № 132 от 02.08.91, в соответствии с которым кабинет РКТ входит в состав отдела (отделения) лучевой диагностики лечебно-профилактического учреждения, возглавляет его квалифицированный врач-рентгенолог, прошедший подготовку по рентгеновской компьютерной томографии. При этом штатные нормативы кабинета РКТ устанавливаются с учетом обеспечения работы не менее чем в двухсменном режиме из расчета для односменной работы: 1 врач-рентгенолог, 2 рентгенолаборанта и 1 инженер.
В отделении обследуются пациенты с патологией практически всех, кроме «движущихся», например сердца, органов как хирургического, так и терапевтического характера.
Запись больных на исследование производится на основании заявки и истории болезни - для стационарных больных, на основании краткой выписки из амбулаторной карты с обоснованием цели исследования -для амбулаторных больных. Амбулаторные больные обследуются в порядке очереди по предварительной записи, стационарные - в тот же (экстренная диагностика) либо на следующий день после необходимой подготовки для проведения процедуры.