Смекни!
smekni.com

Иммунология опухолей. Иммунные аспекты аутоиммунной патологии (стр. 10 из 30)

ДНК-вакцины Такие вакцины представляют собой генетическую последовательность, которая кодирует опухолевый антиген. Она встроена в систему доставки (плазмида, вирусный вектор и т.д.) и содержит промотор, обеспечивающий экспрессию экзогенного белка в эукариотических клетках. Эти конструкции, введенные в мышечную ткань или подкожно, трансфецируют клетки пациента (фибробласты или миоциты). Результатом активации введенного гена является повышение локальной концентрации необходимого антигена и как следствие развитие иммунного ответа на него. Такая генетическая конструкция может содержать несколько антигенных детерминант, что повышает вероятность их совпадения с антигенами опухоли и, соответственно, развития противоопухолевого иммунного ответа. Применение таких вакцин ограничивается опухолями с определенными антигенными детерминантами. Достаточно выраженный иммунный ответ наблюдается при использовании в ДНК-вакцинах ксеноантигенов, что позволяет рассматривать их перспективными при лечении рака вирусной этиологии, например вызываемого вирусом папилломы человека рака шейки матки.

Вакцины на основе опухолевых клеток представляют собой живые аллогенные или аутологичные опухолевые клетки, пролиферативные способности которых ограничены различными методами: облучением, митомицином либо лизированные замораживанием и размораживанием или тепловым воздействием клетки. Присутствующий в этом случае широкий спектр антигенов определяет возможность их использования при соответствующей опухоли.

К сожалению, антигенный профиль опухолевых клеток, полученных из разных мест (основная опухоль, метастазы, лимфоузлы) может существенно различаться. К тому же не всегда есть возможность получить достаточное количество опухолевого материала от больного и получение однородной стандартизованной популяции опухолевых клеток, пригодных для получения аутологической вакцины. Такие вакцины являются фактически индивидуальными. Такие вакцины проходят уже III фазу клинических испытаний, в частности при меланоме, с определенным положительным эффектом.

В случае использования аллогенных клеток вероятность совпадения антигенов вакцины и опухоли снижается, поэтому такие вакцины создаются, как правило, из клеточных линий, взятых у нескольких больных (поливалентные вакцины). Смесь клеточных линий от нескольких сходных опухолей может содержать достаточно широкий спектр опухолевых антигенов. Такой вариант вакцин позволяет существенно повысить вероятность совпадения антигенов вакцины и больного. Преимущество этих вакцин состоит в том, что они не требуют взятия опухолевых клеток у пациента и возможно получение достаточного их количества для нескольких иммунизаций. Примером такой вакцины является поливалентная меланомная клеточная вакцина (PCMV), которая состоит из трех аллогенных меланомных клеточных линий с высокой экспрессией поверхностных иммуногенных глико- и липопротеинов и ганглиозидов. Клинические испытания такой вакцины показали, что развитие иммунного ответа как клеточного, так и гуморального типа на эти антигены коррелировало с повышением выживаемости пациентов.

Бактериальные адъюванты Классическим примером бактериальных адъювантов является БЦЖ, свойство которой активировать иммунную систему делает возможным использование ее в различных формах иммунотерапии, например как стандартный препарат, используемый при лечении рака мочевого пузыря или включаемый в противоопухолевую вакцину. Достаточно много клинических испытаний противоопухолевых вакцин проводится сейчас с использованием этой бактерии. Как правило, БЦЖ используют в составе аутологичных или аллогенных клеточных вакцин. Так, при раке почки, меланоме применение вакцин, состоящих из аутологичных опухолевых клеток и БЦЖ, вызывает стабильный клинический эффект. В других же случаях, например при раке толстой кишки, применение аналогичной вакцинации клинического эффекта не имело. К сожалению, эффекты от применения БЦЖ (в том числе и побочные) не всегда предсказуемы. Поэтому основной путь развития бактериальных адъювантов состоит в том, чтобы активизировать их иммуностимулирующий потенциал и минимизировать воспалительные побочные эффекты.

HLA-молекулы Экспериментальные исследования показывают, что введение аутологичных опухолевых клеток трансфецированных аллогенными HLA-антигенами I класса приводит к развитию специфического противоопухолевого иммунного ответа. В этом случае развитие противоопухолевого иммунного ответа тесно связано с развитием иммунного ответа на используемый аллоантиген. Вероятно, это происходит через антигенпрезентирующие клетки, которые, активируясь аллогенным антигеном, захватывают вместе с ним и опухолевый антиген, также презентируя его Т-лимфоцитам (кросс-презентация). Кроме того, НLA-антигены вызывают выраженный иммунный ответ, сопровождающийся повышением локальной концентрации стимулирующих цитокинов, которые также стимулируют и опухолеспецифичные цитолитические Т-лимфоциты. При этом такие сформировавшиеся цитолитические Т-лимфоциты вполне способны уничтожать и опухолевые клетки, не несущие на себе чужеродных HLA-антигенов. Клинические испытания вакцины на основе HLA-B7/2-микроглобулин-трансфецированных аутологичных меланомных клеток показали ее способность вызывать частичную ремиссию или стабилизацию процесса у пациентов с множественной рецидивирующей или резистентной к стандартному лечению меланомой.

Костимулирующие молекулы Известно, что костимулируюшие молекулы В7-1 (CD80), молекулы межклеточной адгезии ICAM-1 (CD54), LFA-3 (CD58) усиливают антигенспецифическую Т-клеточную активацию. С использованием рекомбинантной технологии созданы векторы, с помощью которых генами, кодирующими указанные молекулы, можно трансфецировать опухолевые клетки, используемые затем для вакцинации. Такой подход показал эффективность при экспериментальных исследованиях при В-клеточной лимфоме.

CpG-олигонуклеотиды Бактериальная ДНК содержит неметилированные CpG-динуклеотиды, которые гораздо реже встречаются в ДНК человека. Они действуют как сигналы опасности для клеток иммунной системы и активируют врожденный и приобретенный иммунный ответ. Некоторые клетки иммунной системы имеют рецепторы (TLR9), способные связываться с CpG-последовательностями и таким образом запускать целый каскад сигналов, которые в конечном итоге приводят к активации врожденного и приобретенного иммунного ответа. Такие иммуностимулирующие свойства CpG-олигодеоксинуклеотидов определяют возможность их использования для иммунотерапии опухолей.

Белки теплового шока Белки теплового шока (HSP) – это внутриклеточные молекулы, основная функция которых – катализация укладки полипептидов и контроль структуры белка. Количество HSP увеличивается в ответ на повреждающие воздействия различных факторов. С точки зрения создания противоопухолевых вакцин, ценно свойство HSP связываться с пептидами опухолевой клетки и фактически нести антигенный репертуар той клетки, из которой они получены. На экспериментальных моделях установлено, что иммунизация белками теплового шока HSP70, HSP90 и GP96, выделенными из опухолевых клеток, вызывает образование специфических цитолитических Т-лимфоцитов. Другие белки этого семейства: Calreticulin, HSP110 и GRP170 – также могут использоваться в иммунотерапии рака. Клинические испытания показали повышение числа опухолецифических цитолитических (CD8+) Т-лимфоцитов у большинства больных меланомой, иммунизированных белком GP96, полученным из аутологичных опухолевых клеток, что коррелировало с клиническим эффектом.

Биологические модификаторы иммунного ответа Биологические модификаторы иммунного ответа (IL-2, IL-4, IL-6 IL-12, IFN, GM-CSF и т.д.) часто вовлекаются в технологию производства вакцин или являются их составными компонентами. Такие цитокины используются в составе ДНК-вакцин. В этом случае экспрессируется выбранный иммуностимулирующий белок иногда совместно с опухолевым антигеном. Так, интрагуморальное введение плазмиды, кодирующей IL-2, IL-12 или ИНФa, вызывают длительное локальное повышение концентрации этих белков в опухоли. Это приводит к стимуляции специфического противоопухолевого иммунного ответа и позволяет избежать токсичности, свойственной при системном введении таких препаратов.

Дендритные клетки Как было отмечено ранее, ключевую роль в распознавании опухолевого антигена и презентации его специфическим цитолитическим Т-лимфоцитам играют дендритные клетки. Такие клетки можно рассматривать как мощный эндогенный адъювант, который при использовании его с опухолевым антигеном вызывает индукцию специфического иммунного ответа. Стандартная процедура включает получение незрелых дендритных клеток или их предшественников от больного, инкубацию их с ростовыми факторами (GM-CSF, IL-4), факторами, индуцирующими их созревание (TNF), и опухолевыми антигенами, что в конечном итоге приводит к формированию функционально полноценных антигенпрезентирующих клеток, которые вводятся больному. Таким образом, иммунный ответ на опухолевый антиген начинается in vitro, где достаточно точно можно контролировать количество и функциональное состояние антигенпрезентирующих клеток, а заканчивается в организме образованием специфических цитолитических CD8+ Т-лимфоцитов. Применение этого подхода демонстрирует иммунологический и клинический эффект при метастатическом раке почки, меланоме и опухолях других локализаций.

Імунопрофілактика пухлин

Загальний принцип імунопрофілактики пухлин оснований на посиленні імунного нагляду. Конкретні механізми порушень, що призводять до виникнення пухлин, поки що вивчені недостатньо. Однак у випадку, коли розвиток пухлин включає етап вірусної інфекції, проведення прицільної імунопрофілактики цілком реальне. Воно полягає у попередженні зараження тим чи іншим вірусом або у лікуванні наявної вірусної інфекції.