В настоящее время известно около 30 химических соединений, выполняющих в мозге медиаторную функцию. Они не разбросаны беспорядочно по причудливому рисунку ткани мозга, а сосредоточены в определённых его областях, в тех группах нейронов, аксоны которых устремлены к высокоспециализированным областям мозга.
Определённую группу составляют вещества, образующиеся при трансформации аминокислот. По строению они относятся к аминам (обширный класс азотсодержащих органических соединений). Они синтезируются в мозге в малых количествах, но в структуре их молекул закодирована информация, служащая мощным регулятором вегетативных функций, психического, эмоционального состояния, двигательных реакций. Чаще всего нейроны обладают ферментным набором, необходимым для образования медиатора одного типа. Синтезированные впрок молекулы хранятся в специальных кладовых — синаптических пузырьках, расположенных в окончании аксона. Они защищены от разрушения ферментов, действующих на них после выхода из пузырьков. Освобождение из хранилищ осуществляет нервный импульс. Медиатор связывается с рецепторами постсинаптической мембраны, и тут реализуется перевод всего запаса информации химического сигнала в специфическую физиологическую реакцию, например образование и выделение гормона клетками железы, сокращение мышечного волокна, возбуждение или торможение нейрона. В зависимости от характера (назначения) аксонов нейронов, вырабатывающих соответствующие медиаторы в определённые доли мозга, наблюдаются характерные эффекты. Многие нервные клетки, вырабатывающие из аминокислоты тирозина медиатор норадреналин, сосредоточены в стволе мозга, образуя там скопления. Их аксоны достигают гипоталамуса (центра вегетативных функций организма), мозжечка и переднего мозга. Оказалось, что норадреналин (один из медиаторов) контролирует двигательную активность, эмоциональное и психическое состояние. Он причастен к поддержанию бодрствования, системе поощрения («центр удовольствия»), словом, формированию приятных, положительных эмоций, к регуляции настроения в целом.
Предшественник синтеза норадреналина — дофамин сосредоточен в нейронах в области среднего мозга. Их аксоны достигают переднего мозга, где участвуют в регуляции эмоционального состояния; в области полосатого тела[97] в головном мозге они выполняют ведущую роль в регуляции сложных движений.
Общеизвестны опыты со вживлением микроэлектродов в стволовую часть мозга, проводившиеся на крысах: стремление получать удовольствие заставляло животных самостоятельно замыкать электрическую цепь, раздражая и активируя тем самым нейроны, которые с помощью специфических химических посредников (норадреналина, дофамина) стимулировали их положительный эмоциональный фон.
Образуемый из аминокислоты триптофана медиатор серотонин сосредоточен в области ствола мозга. Нейроны этого центра достигают гипоталамуса, других областей мозга. Считают, что серотонин участвует в процессах терморегуляции, чувствительного восприятия, перехода от бодрствования ко сну.
Есть вещества, обладающие возбуждающим воздействием на большинство нейронов мозга. Этой способностью обладают глутаминовая и аспарагиновая аминокислоты — естественные продукты гидролиза (расщепления органических соединений с участием воды) белков. Ферментативное отщепление от глутаминовой кислоты одной функциональной группы ведёт к образованию гамма-аминомасляной кислоты (ГАМК) — универсального тормозного медиатора в центральной нервной системе.
Сосуды головного мозга обладают уникальной особенностью: за счёт дополнительного плотного слоя окружающих глиальных клеток стенка их непроницаема для множества соединений. Так природа защитила мозг как от случайных соединений, так и от обычных естественных промежуточных и конечных продуктов обмена. Многие аминокислоты, холестерин, лекарственные препараты не в состоянии пассивно поступать из общего кровотока в ткань мозга. Молекулы должны быть либо очень маленькими (как, например, молекулы кислорода), либо легко растворяться в липидных компонентах мембран глиальных клеток. Этим требованиям вполне соответствует этанол.
Молекула этанола характеризуется малыми размерами и обладает выраженными дифильными свойствами (способностью растворяться в воде и растворять жиры). Гематоэнцефалический барьер (физиологический механизм, регулирующий обмен веществ между кровью, спинномозговой жидкостью и мозгом; защищает центральную нервную систему от проникновения чужеродных веществ, введённых в кровь, или продуктов нарушенного обмена веществ) для молекулы этанола — не преграда. Хотя основная часть выпитого алкоголя (около 80 %) окисляется в печени, через 85 секунд после появления спирта в крови, он обнаруживается в спинномозговой жидкости, в ткани мозга. Если концентрацию алкоголя в крови принять за единицу, то в печени она будет 1,45, в спинно-мозговой жидкости — 1,50, а в головном мозге — 1,75. Многие клетки мозга таким образом оказываются обречены. Воздействие этанола на пока ещё целые мембраны нейрона, а также вмешательство этанола в нормальную работу веществ-медиаторов искажает поступающие к головному мозгу сигналы, что является нарушением работы всей нервно-психической деятельности человека.
Один из основных вопросов в наркологии этилового спирта — вопрос о взаимоотношении между этанолом, образованным эндогенно, в самом организме, и поступившим извне, причём не только с алкогольными напитками, но и с пищевыми продуктами. Между тем возникновение и развитие алкоголизма с высокой вероятностью связано с этим далеко ещё не изученным процессом.
В медицине различат следующие виды эндогенного этанола (сокращённо ЭЭ):
1. внутриклеточный ЭЭ (продукт внутриклеточного метаболизма);
2. внеклеточный ЭЭ: ЭЭ межклеточной жидкости, ЭЭ спинномозговой жидкости; ЭЭ лимфы, ЭЭ крови;
3. условно ЭЭ (продукт микробной ферментации сахара в нижнем отделе желудочно-кишечного тракта — ЖКТ).
1. Эндогенный (внутренний) этанол относится к незаменимым факторам обмена веществ. Внутриклеточный ЭЭ является естественным метаболитом (далее – эндогенный этанол (ЭЭ)) — веществом, образующимся в организме на опредёленном этапе процессов усвоения пищевых продуктов, и по принципу обратной связи, участвующим в регуляции этих процессов. ЭЭ является промежуточным продуктом катаболизма (процесса разложения на более простые вещества) углеводов; будучи конечным веществом анаэробного (без кислородного) этапа, в виде ацетилкоэнзима А (продукт конденсации коэнизма А с уксусной кислотой) вступает в аэробную фазу – цикл Кребса, в котором окисляется до углекислого газа и воды.
Внутриклеточный ЭЭ участвует в энергетическом обмене клетки, осуществляя челночный перенос энергии между митохондриями и цитозолем (часть цитоплазмы клетки) и удаляя из клетки избыток выделяющих энергию субстратов.
Потребность в переносе энергии между митохондриями и цитозолем обусловлена тем обстоятельством, что энергетические процессы в этих структурах клетки несколько различны и разделены митохондриальной мембраной. В цитозоле энергия производится в процессе гликолиза — анаэробного расщепления глюкозы на пируват и лактат. В митохондриях энергия производится в результате функционирования цитратного цикла[98], сопряжённого с дыхательной цепью, производящей аденозинтрифосфат (АТФ) – аккумулятор и переносчик энергии.
Как в цитозоле, так и в митохондриях энергия производится в процессе окислительно-восстановительных реакций, которые протекают с участием дегидрогеназ и никотинамидадениндинуклеотида (НАД)[99] в окисленной (НАД+) или восстановленной (НАДН) форме. Энергия возникает в процессе отделения от окисляемой молекулы атомов водорода. Энергия в виде атома водорода и двух электронов, которая переносится на НАД+ с образованием НАДН, называется восстанавливающим эквивалентом.
Митохондрии снабжают клетку энергией не только в форме АТФ, но и в форме восстанавливающих эквивалентов посредством НАДН, который используется для восстановительных синтезов в цитоплазме. Однако внутренняя мембрана митохондрий является непроницаемой для НАД+ и НАДН. Поэтому для переноса восстанавливающих эквивалентов между митохондриями и цитозолем должен использоваться так называемый субстратный челнок — соединение, окисление которого сопровождается высвобождением восстанавливающих эквивалентов, а восстановление – его присоединением. Субстратный челнок должен легко проникать через митохондриальную мембрану и восстанавливаться или окисляться на внутренней и внешних сторонах мембраны, перенося тем самым восстанавливающий эквивалент через мембрану.
Поскольку митохондриальная мембрана проницаема для этанола и ацетальдегида, таким субстратным челноком служит обратимое превращение «этанол – ацетальдегид», катализируемое НАД-зависимой алкогольдегидрогеназой (АДГ) по обе стороны мембраны. Такой челнок характерен не только клеткам млекопитающих, он функционирует также в клетках дрожжевых грибов и некоторых простейших.
В митохондриях окислительные реакции с выделением энергии происходят в процессе функционирования цитратного цикла — цепи биохимических реакций, в которых исходный субстрат ацетил-КоА окисляется до СО2 с выделением энергии в форме восстанавливающих эквивалентов. Эта энергия поступает в систему цитохромов (сложных белков) и в дыхательную цепь, где и происходит синтез АТФ – универсального переносчика энергии, которая используется в различных энергетически-зависимых реакциях в клетке. Особенно высокая потребность в АТФ имеет место в нейронах мозга, где энергия используется для поддержания электрохимических градиентов, обеспечивающих передачу нервных импульсов. Дефицит, даже незначительный, АТФ в нейронах мозга приводит к целому ряду компенсаторно-восстановительных процессов, в первую очередь – к актуализации тяги к алкоголю.