Смекни!
smekni.com

Лекции по биохимии (стр. 18 из 26)

2. Сравните строение разных видов мышечных волокон.

Каждая скелетная мышца представляет собой активный орган движения, построенный из многих тканей, главной из которых является поперечнополосатая мышечная ткань. Кроме того, в состав мышцы входят рыхлая и плотная соединительные ткани, сосуды и нервы. Функциональное значение мышцы как органа состоит в ее способности сокращаться и изменять при этом свои размеры.

Это свойство мышцы обусловлено сократительной способностью скелетной мышечной ткани, что в свою очередь связано с сокращением мышечных волокон в результате укорочения миофибрилл в пределах каждого саркомера. Мышечные волокна являются основными рабочими элементами мышцы.

Различают красные и белые мышечные волокна. Четкие границы между красными и белыми мышечными волокнами отсутствуют, поэтому их подразделение производится на основе сопоставления количественных показателей их структурных компонентов. Так, красные мышечные волокна (нередко обозначаемые мионами 1-го типа) содержат больше саркоплазмы и, соответственно, меньшее количество миофибрилл.

В саркоплазме определяются многочисленные митохондрии, которые отличаются высокой активностью окислительных ферментов (в частности, СДГ — сукцинатдегидрогеназы). Саркоплазма характеризуется повышенным содержанием миоглобина. Диаметр красных мышечных волокон несколько меньше, чем средний диаметр белых мышечных волокон. Вокруг красных мионов интенсивно развита капиллярная сеть.

По данным гисторадиографии, для этих мышечных волокон характерен более высокий уровень синтеза белков. На красных мышечных волокнах некоторых мышц (например, глаза) определяются нетипичные множественные моторные бляшки.

Белые мышечные волокна (или мионы II-го типа) содержат большее число миофибрилл, расположенных в виде столбиков, или колонок, образующих на поперечном срезе широкие поля. Саркоплазма образует узкие прослойки между миофибриллярными колонками. В ней мало митохондрий. Невысоко содержание и миоглобина. Диаметр белых мышечных волокон больше, чем красных. На каждом белом мышечном волокне имеется лишь одна моторная бляшка типичного строения. Белые мионы сокращаются быстрее, чем красные.

Между красными и белыми мышечными волокнами имеются переходные формы — промежуточные волокна. Мышцы человека, как правило, смешанные по составу мионов разных типов, но каждая из них имеет свой рисунок, определяемый процентным соотношением числа красных, белых и промежуточных мышечных волокон.

Важная роль в построении мышцы как органа принадлежит соединительной ткани, которая объединяет мышечные волокна в пучки, проводит кровеносные сосуды и нервы, а также обеспечивает прикрепление мышцы к костям. Рыхлая соединительная ткань внутри мышечных пучков называется эндомизием. Пучки мышечных волокон соединяются между собой также прослойками рыхлой соединительной ткани, которую называют перимизием.

Снаружи мышца покрыта плотной соединительнотканной оболочкой — эпимизием, или фасцией. Внутримышечная соединительная ткань обеспечивает развитие густой капиллярной сети вокруг каждого мышечного волокна. Благодаря эластическим свойствам она участвует в процессах, обусловливающих расслабление мышцы после ее сокращения.

3. Опишите строение миофибрилл.

Миофибриллы — органеллы клеток поперечнополосатых мышц, обеспечивающие их сокращение. Служат для сокращений мышечных волокон. Миофибрилла — нитевидная структура, состоящая из саркомеров. Каждый саркомер имеет длину около 2 мкм и содержит два типа белковых филаментов: тонкие микрофиламенты из актина и толстые филаменты из миозина. Границы между филаментами (Z-диски) состоят из особых белков, к которым крепятся ±концы актиновых филаментов. Миозиновые филаменты также крепятся к границам саркомера с помощью нитей из белка титина (тайтина). С актиновыми филаментами связаны вспомогательные белки — небулин и белки тропонин-тропомиозинового комплекса.

У человека толщина миофибрилл составляет 1-2 мкм, а их длина может достигать длины всей клетки (до нескольких сантиметров). Одна клетка содержит обычно несколько десятков миофибрилл, на их долю приходится до 2/3 сухой массы мышечных клеток.

4. Нарисуйте строение саркомера.

Схема саркомера.

5. Дайте характеристику толстых протофибрилл.

Толстые протофибриллы образуют плотный обладающий двойным лучепреломлением участок Миофибриллы - анизотропный диск (диск А). Между толстыми протофибриллами частично вдвинуты тонкие протофибриллы («зона перекрывания»). Участок саркомера по обе стороны от полоски Z, содержащий лишь тонкие протофибриллы, называется изотропным диском (диск 1). Центральная зона диска А, лишённая тонких протофибрилл, называется диском Н; в его центре обычно видна полоска М, составленная короткими (40 нм) М-нитями, расположенными вдоль длинной оси Миофибриллы; длина их соответствует ширине полоски Миофибриллы С обеих сторон от полоски Миофибриллы расположен субдиск Н - узкая зона (~ 130 нм), более светлая, чем остальной диск Н. Толстые протофибриллы имеют по всей длине равномерно расположенные отростки («мостики»), представляющие, по-видимому, отошедшие от протофибрилл концы миозиновых молекул. Середина толстых протофибрилл лишена отростков, чем и обусловлено возникновение светлой зоны (субдиска Н). Данная схема строения Миофибриллы допускает ряд возражений, например при сильном растяжении Миофибриллы тонкие протофибриллы должны полностью выйти из диска А, а саркомер - распасться на фрагменты, однако этого не происходит, т. к. допускается существование 3-го типа протофибрилл - «сверхтонких нитей», соединяющих полоски Z.

6. Опишите строение молекулы белка миозина.

Миозины — семейство белков, являющихся моторами цитоскелета системы микрофиламентов. Миозины состоят из тяжёлых цепей (H) и лёгких (L) в разном количестве в зависимости от типа миозина. H-цепь имеет 2 участка — «головку» и «хвостик». Головка тяжёлой цепи миозина имеет сайт связывания с актином и сайт связывания АТФ. По количеству «головок» миозины делятся на «традиционные» (convention myosin) — 2 головки, и нетрадиционные (unconvention myosin) — одна «головка». Традиционные миозины могут связываться между собой в протофибриллы, а нетрадиционные — не могут.

На электронных микрофотографиях молекулы миозина имеют вид палочек (1600´25) с двумя глобулярными образованиями на одном из концов. Полагают, что 2 полипептидные цепи, образующие миозина, скручены в спираль. Белки, аналогичные миозину, обнаружены в жгутиках, ресничках и других двигательных структурах у многих простейших и бактерий, сперматозоидов животных и некоторых растений.

7. Какие формы актина существуют?

Существует в двух формах: глобулярной (Г-актин) и фибриллярной (Ф-актин), являющейся продуктом полимеризации Г-актина.

8. Опишите строение белков актина и тропомиозина.

Актин — белок, полимеризованная форма которого образует микрофиламенты — один из основных компонентов цитоскелета эукариотических клеток. Вместе с белком миозином образует основные сократительные элементы мышц — актомиозиновые комплексы саркомеров.

Водорастворимый глобулярный белок (М 42 000), состоящий из 376 аминокислотных остатков (G-актин). С каждой молекулой G-актина связана одна молекула ATФ. При добавлении Mg2+ и некоторых других ионов актин быстро полимеризуется (с образованием неорганического фосфата), образуя двунитчатую спиральную структуру – F-актин, содержащий АДФ. Тонкие филаменты мышцы образованы такими двунитчатыми структурами, внутри которых молекулы актина связаны между собой нековалентными связями.

Тропомиозин — белок (70 кДа), в составе которого две субъединицы, переплетающиеся между собой в α-спиралевидные фибриллярные структуры. Тропомиозин связывается в единый комплекс с F-актином в области изгиба молекулы, обеспечивая его стабильность. По длине тропомиозин равен 7 субъединицам G-актина, при этом контактирует только с одной из нитевидных структур F-актина. Кроме этого, тропомиозин совместно с тропонином участвует в регуляции взаимодействия актина с миозином.

9. Какие белки принимают участие в мышечном сокращении?

В осуществлении мышечного сокращения принимают участие несколько белков: актин , миозин , тропо-миозин и тропонин.

10. Нарисуйте схему мышечного сокращения.

Биохимические основы спортивной тренировки.

1. Расскажите об основных задачах спортивной тренировки.

Спортивная тренировка – это основная форма подготовки спортсмена, которая представляет собой специализированный педагогический процесс, построенный на системе упражнений и направленный на воспитание и совершенствование определенных способностей, обуславливающих готовность спортсмена к достижению высших результатов.

Целью спортивной тренировки является подготовка к спортивным состязаниям, направленная на достижение максимально возможного для данного спортсмена уровня подготовленности, обусловленного спецификой соревновательной деятельности и гарантирующего достижение запланированных спортивных результатов.

В процессе спортивной тренировки решаются следующие основные задачи:

- освоение техники и тактики избранной спортивной дисциплины;

- совершенствование двигательных качеств и повышение возможностей функциональных систем организма, обеспечивающих успешное выполнение соревновательного упражнения и достижение планируемых результатов;