Идентификация хромосомных аномалий. Явление конъюгации гомологичных хромосом в мейозе используется для индентификации многих хромосомных перестроек, затрагивающих линейную структуру хромосомы. Делеции, вставки, инверсии, реципрокные транслокации, дуплика-ции приводят к изменению конфигурации бивалента. Возникают униваленты, триваленты и т. д. В сочетании с анализом митотических хромосом исследование морфологии мейотических хромосом в пахитене, диакинезе и мета-фазе I неоднократно проводилось в случаях численных или структурных изменений аутосом, половых хромосом у мужчин с бесплодием (А. А. Прокофьева-Бельговская и В. К. Борджадзе, 1971; Kjessler, 1966; Hulten, 1974, и др.). Субмикроскопическая или надмолекулярная организация хромосомного аппарата изучена совершенно недостаточно. Если о строении хромосомы на уровне световой микроскопии и о молекулярном строении наследственного материала в настоящее время накоплена обширная информация, то промежуточные ступени ультраструктурной организации хромосомы остаются в основном неизвестными. Нет пока никаких фактических предпосылок ставить вопрос о возможной специфике ультраструктурной организации генетического аппарата человека.
Наиболее ценную информацию о тонкой структуре функционирующих хромосом принесло исследование политенных хромосом, которые являются специфической, но естественной моделью хромосом интерфазного ядра в клетках двукрылых, и хромосом типа «ламповых щеток», обнаруживающихся в ооцитах амфибий в мейотической профазе I. Большие размеры этих хромосом позволили провести тщательное их изучение под световым микроскопом. В результате этих исследований сформулированы положения, которые рассматриваются как принципиальные для организации хромосом эукариотов в целом (И. И. Кикнадзе, 1972).
В интерфазном ядре хромосомные районы, соответствующие эухроматину, имеют хромомерное строение. Каждая хромомера является структурной и функциональной единицей хромосомы как продольно дифференцированной органеллы. Дифференциальная транскрипция этих единиц структурно обеспечивается деконденсацией упакованного в ней дезоксирибонуклеопротеида, что выражается в форме пуфов в политенных хромосомах, или петель в хромосомах типа «ламповых щеток».
Методом исследования тонкой структуры интерфазных ядер, не обладающих политенными хромосомами, а также метафазных хромосом является электронная микроскопия (Ю. С. Ченцов, В. Ю. Поляков, 1974). К сожалению, на основании результатов, полученных этим методом, пока не удалось составить цельного представления об ультраструктуре интерфазного ядра. На электронограммах ультратонких срезов основная обнаруживаемая морфологическая единица — это нить в разных сечениях диаметром 10 нм и меньше. На препаратах хроматина, распластываемого на поверхности водного мениска, обнаруживаются протяженные нити около 23—25 нм в диаметре.
Несмотря на многочисленные исследования митотических или мейотических хромосом, данные по их ультраструктуре, которые позволили бы создать непротиворечивую модель упаковки элементарной хромосомной нити во время клеточного деления, остаются скудными. Наибольшая информация получена по ультраструктуре специализированных районов хромосом: центромерного района, ядрышка, синаптонемального комплекса в мейотическпх хромосомах. Данные электронной микроскопии целых изолированных хромосом использованы для их идентификации, при этом специальное внимание уделено метафазным хромосомам человека (Bahr, Larsen, 1974). Этот метод позволил обнаружить неравномерную плотность упаковки элементарных хромосомных нитей по длине хромосом, и рисунок этой неравномерности оказался совпадающим с линейной дифференцированностыо структуры хромосомы, выявляемой под световым микроскопом. Элементарные фибриллы на электронограммах целых распластанных хромосом имеют размер порядка 25—30 нм. Биохимическое исследование таких фибрилл и соответствующие расчеты дают основание заключить, что молекулы нуклеопротеидов находятся в них в сверхскрученном состоянии и что, кроме гистонов, фибриллы содержат другие белки.
Достаточно полное освещение вопросов молекулярной генетики и хромосомной организации в многочисленных специальных монографиях и руководствах (С. Е. Бреслер, 1973; И. П. Ашмарин, 1974; Г. Стент, 1974, и др.) исключают необходимость подробного рассмотрения этих вопросов в данной книге. Сравнительно новый молекулярный аспект хромосомной организации возник в связи с разработкой методов фракционирования тотальной ДНК генома по повторяемости сходных нуклеотидных последовательностей и методов гибридизации нуклеиновых кислот на хромосомных препаратах. Эти методы открыли возможность выяснения локализации разных фракций ДНК в хромосомном наборе. Важными находками, полученными в этой новой области, пограничной между молекулярной и цитологической генетикой, были: а) обнаружение в геноме эукариотов, помимо ДНК с уникальными последовательностями, большой доли ДНК с одинаковыми или близкими последовательностями нуклеотидов, повторяющимися многие сотни и тысячи раз (Г. П. Георгиев, 1973; С. А. Лимборская, 1975); б) обнаружение неравномерной локализации ДНК с разными характеристиками в хромосомном наборе: ДНК с наибольшим числом повторяющихся последовательностей локализуется в гетерохроматиновых районах хромосом.
К настоящему времени фракционирование ДНК и определение хромосомной локализации фракций проведено на многих видах организмов. Каждый вид характеризуется своей специфической структурой генома в отношении состава ДНК и спецификой их распределения по хромосомам набора. Многие работы этого направления выполнены на клетках человека. Полученные в них результаты подытожены А. Ф. Захаровым (1977) и Jones (1973).
ДНК генома человека может быть фракционирована на ДНК с уникальными копиями (около 64%) и ДНК с повторяющимися последовательностями. По скорости ренатурации, которая отражает повторяемость нуклеотидных последовательностей, последняя фракция может быть подразделена на ДНК с малой (13,4%), промежуточной (12,3%) и высокой (10,3%) скоростью ренатурации молекул ДНК. Таким образом, в геноме человека около 10% всей ДНК имеет высокую многократность повторения одинаковых последовательностей.
Методом градиентного ультрацентрифугирования в группе ДНК с высокой повторяемостью последовательностей выделены по крайней мере четыре типа так называемых сателлитных ДНК. Помимо этих видов ДНК, в экспериментах с гибридизацией ДНК — РНК исследована хромосомная локализация ДНК, кодирующая синтез 5S, 18S и 28S рибосомных РНК. В настоящее время распределение разных типов ДНК в хромосомах человека вырисовывается следующим образом.
ДНК с низкой и промежуточной повторяемостью нуклеотидных копий обнаруживается во всех хромосомах, причем она локализуется по всей длине их плеч.
ДНК с высокой повторяемостью нуклеотидных копий обнаруживается преимущественно в околоцентромерных и отчасти теломерных районах. Сателлитные индивидуальные ДНК распределены в разных хромосомах неравномерно. Так, сателлитной ДНК I и IV особенно богата Y-xpoмосома, в хромосомах 1 и 16 больше всего содержится сателлитной ДНК II, а в хромосоме 9 — III. Рибосомная ДНК 18S и 28S заключена почти исключительно в коротких плечах всех 10 акроцентрических хромосом. Дистальная часть длинного плеча аутосомы 1 — преимущественное место для пистронов, кодирующих 5S РНК. Не исключена возможность, что методом гибридизации ДНК с РНК insitu удастся картировать не только полигенные ло-кусы, но также структурные гены, повторяющиеся малое число раз (Rotterdam. Conference, 1974).
Две важнейшие черты генетической организации эукариотов - дифференциальная активность структурных генов и большая доля генов, регулирующих этот процесс,— должны иметь основой соответствующую структурную организацию хромосомы. Десятилетия упорного труда цитогенетиков значительно приблизили нас сегодня к пониманию того, как в хромосоме взаимодействуют структура и функция, как хромосома осуществляет свою сложную роль интеграции системы генов.
Первая фундаментальная черта структурно-функциональной организации хромосомы состоит в существовании двух разных функциональных типов хромосомного материала — эухроматина и гетерохроматина.Их основное различие заключается в транскрипционной активности.
Отсутствие генетической активности у гетерохроматина обусловлено либо его бедностью структурными генами (структурный гетерохроматин), либо временным выключением участка хромосомы, несущего такие гены, из генетической транскрипции (факультативный гетерохроматин, гетерохроматинизация).
Второй важнейшей чертой хромосомной организации является линейная расчлененность хромосомы па участки, состоящие из хроматина разного типа. Каждая хромосома отличается своим уникальным порядком расположения гетеро- и эухроматиновых районов.
Подразделенность хроматина по генетическому значению хорошо коррелирует с различием типов хроматина и по ряду других характеристик: состоянию конденсации в интерфазном ядре и хронологии конденсации в митотическом и мейотическом цикле; времени репликации ДНК;
отношению к окраске флуорохромами или нефлуоресцирующими красителями; чувствительности к повреждающему действию химических мутагенов; химическим особенностям ДНК и, по-видимому, белков, входящих в состав хроматина; фенотипическим проявлениям хромосомных перестроек. Для гетерохроматина характерны конденсированное состояние в интерфазном ядре, опережающая конденсация в профазе митоза и мейоза, возможность отставать в конденсации спонтанно или под влиянием некоторых воздействий в метафазе митоза. По сравнению с эухроматином гетерохроматиновые районы хромосом репродуцируются в более поздние отрезки S-периода. При дифференциальной окраске по G- и С-методике гетерохроматиновые сегменты сохраняют способность к окрашиванию (G-сегменты) и даже усиленно красятся (С-сегменты). В цитогенетике хорошо известна неравномерность распределения по длине хромосомы ее структурных повреждений, индуцируемых мутагенными веществами: повышенной повреждаемостью отличаются именно гетерохроматиновые районы. ДНК с неоднократно повторяющимися нуклеотидными последовательностями характерна именно для гетерохроматина. В отличие от эухроматина, содержащего уникальные гены, дисбаланс по которым отрицательно отражается на фенотипе организма, изменения в количестве гетерохроматина не влияют или значительно меньше влияют на развитие признаков организма.