Но, как нетрудно догадаться, биодизельное топливо не станет панацеей от энергетического голода, когда таковой случится. Связано это с тем, что количество посевных площадей, на которых возможно выращивание указанных выше культур, ограничено. Например, в Евросоюзе вследствие производства биодизельного топлива из рапса площадь его посевов увеличилась с 3% в 1990 году до 12% в 2006. Дальнейшее увеличение площадей под эту культуру приведет к вытеснению других культур, снижению производства продуктов питания и, как следствие, росту цен на них. Между тем, нынешние объемы производства биодизеля невелики. Так, Германия, где посевы рапса занимают 10% пашни, имеет удельный вес биодизтоплива в топливном рынке страны около 3% (там же). В Малайзии увеличение площадей под пальмовые плантации уже вызывает протесты «зеленых» против «биологически чистого» биодизеля. Конечно, урожайность можно повысить (например, методами генной инженерии), а посевные площади в развивающихся странах больше, чем в развитых. Но и при этом к 2020 году удельный вес биотоплива в мире составит около 10%. Таким образом, данная технология способна несколько отдалить, но никак не предотвратить наступление энергетического кризиса.
Алкоголь.Не будем подробно рассматривать другую разновидность биотоплива – различные типы алкоголей (этанол, метанол и др.). Достоинства и недостатки у них, в целом, аналогичны достоинствам и недостаткам биодизеля. Если биодизельное топливо является альтернативой дизтопливу, то спирт может служить заменой бензину. Правда, его энергоемкость при этом существенно ниже, а затраты энергии на производство часто могут превосходить энергию, извлекаемую из урожая (в зависимости от погоды, например). Программы по увеличению доли этанола в энергетическом балансе действуют в Евросоюзе, США, Бразилии и других странах. Но данные программы, как и программы по производству биодизеля, являются скорее скрытыми субсидиями сельскохозяйственного сектора. При этом только Бразилии удалось добиться существенных результатов на сегодняшний день: потребление этанола автопарком составляет 20-25% от потребления бензина. Это объясняется жарким бразильским климатом, позволяющим снимать в год до трех урожаев сахарного тростника – самой продуктивной культуры для получения спирта. В США и Евросоюзе с этой целью используется кукуруза, что гораздо менее выгодно. Чтобы обеспечить нынешние потребности США в бензине за счет этанола, пришлось бы засеять кукурузой 97% территории Штатов.
Электрические батареи и аккумуляторы.Электромобили, работающие на энергии, получаемой от батарей или аккумуляторов, появились значительно раньше автомобилей с ДВС. Где-то до начала XX века их выпуск превышал выпуск обычных автомобилей, и первым транспортным средством, превысившим скорость 100 км/ч, был именно электромобиль. Но потом эта технология проиграла конкурентную борьбу. Причиной, как известно, является недостаточная емкость элементов питания. И по сей день, электромобили заперты в достаточно узком секторе рынка транспортных средств. Современный электромобиль развивает скорость от 50 до 100 км/ч, имеет запас хода 50-150 км, и время зарядки аккумуляторов 4-8 часов.
Судя по последним разработкам в области электромобилестроения, сектор рынка, который они занимают, в ближайшие годы вряд ли существенно изменится. Электромобили покупают крупные корпорации - для передвижения по территориям своих промышленных предприятий, домохозяйки - для поездок за покупками, и озабоченные охраной окружающей среды граждане. Электромобили непригодны для передвижения на большие расстояния, для перевозки мало-мальски крупных грузов, для работы в сельском хозяйстве и т. д. Что еще более неприятно, из-за необходимости экономить энергию для движения, на них сложно размещать какие-либо дополнительные электрические приборы, например, кондиционеры. А из-за высокого КПД электродвигатель выделяет мало тепла и поэтому печку в таком автомобиле тоже вряд ли можно будет увидеть. Так что пользоваться ими зимой в России было бы крайне неприятно.
Словом, полноценной заменой автомобилю на ДВС электромобиль в обозримой перспективе не станет. Но и вовсе сбрасывать со счетов эту технологию нельзя.
Водород. В последнее время «водородная экономика» - одна из самых модных тем при обсуждении проблем энергетики.
Действительно, получить эффективную энергоустановку, использующую в качестве топлива воду, разложенную на водород и кислород, а в качестве выхлопа выбрасывающую в атмосферу водяной пар, было бы чрезвычайно желательно. Собственно, энергоустановки, работающие на водороде, созданы. Это топливные элементы – электрохимический источник тока, в котором осуществляется прямое превращение энергии топлива и окислителя, непрерывно подводимых к электродам, непосредственно в электрическую энергию. Их КПД значительно выше, чем у традиционных энергоустановок и может составлять до 90% (описание есть, например, здесь). И автомобили на них бегают. Ожидается, что к концу 2008 года в мире таких автомобилей будет 620-650 штук. Это достаточно символическое их количество вызвано большим количеством проблем, стоящих на пути массового применения данной технологии. Например:
1. Дороговизна получения водорода и отсутствие необходимой, еще более дорогой, инфраструктуры для его получения. Обычно предполагается, что его будут получать на атомных станциях с помощью высокотемпературных ядерных реакторов или путем газификации угля. Все это необходимо строить и объем строительства впечатляет. По некоторым оценкам, Великобритании, чтобы перевести нынешний автомобильный парк на водородное горючее, пришлось бы построить около сотни новых атомных станций. Насколько в этом случае хватит земных запасов урана – вопрос еще более сложный, чем о запасах нефти;
2. Отсутствие соответствующей промышленной и транспортной инфраструктуры (собственно заводы по производству двигателей, сети заправочных станций и т. п.). Пока в мире есть всего несколько сотен километров «водородных шоссе»;
3. Отсутствие дешевой и безопасной технологии хранения водорода на транспортном средстве. Поскольку при смеси водорода с кислородом воздуха образуется взрывающийся от любой искры или толчка гремучий газ, любая транспортная авария, сопровождающаяся утечкой этого топлива, будет приводить к объемному взрыву;
4. При производстве энергии топливными элементами используются каталитические мембраны, изготовленные с использованием платины или палладия, и имеющие при этом короткий срок службы. Это делает ТЭ чрезвычайно дорогими устройствами. Да и вообще не факт, что этих редких металлов на планете Земля достаточно для производства необходимого количества энергоустановок. Дешевых и эффективных катализаторов пока нет. Впрочем, возможно, платина – тот ресурс, который окажется рентабельным добывать на соседних планетах? Если она там, конечно, есть.
Несмотря на указанные выше проблемы, водородная энергетика развивается достаточно быстро. Мировой рынок топливных элементов всех видов последние 5 лет растет примерно на 30% в год. Что же касается водородного автотранспорта, то его доля к 2020 году по одному из прогнозов составит от 0,7% до 3,3% всего парка машин, а к 2050 - от 40% до 74,5%, но этот прогноз, по-видимому, был следствием конъюнктурных соображений. 2050 год – срок более реальный, но вот хватит ли нам нефти и до этого времени?
Можно ли ожидать в ближайшей перспективе существенного роста роли альтернативных, возобновляемых источников энергии? Если понимать под существенным ростом получение ими двухзначной доли в энергобалансе, то, если учитывать среди возобновляемых источников энергии гидроэнергетику, которая уже сегодня составляет значительную долю в энергобалансе (более 5% в балансе первичной энергии), этого можно добиться. Но использование альтернативных видов энергии будет развиваться и без учета гидроэнергетики. Совокупная доля новых и возобновляемых источников энергии наряду с углем, нефтью, газом, ядерной энергией в перспективе может стать одним из важных компонентов структуры энергетического баланса, к которой придет человечество. В среднесрочной перспективе совокупная доля возобновляемых энергоресурсов с учетом гидроэнергетики вряд ли превысит уровень 10-15%, хотя в отдельных, особенно в экономически развитых странах доля некоторых их видов (например, производство ветроэлектроэнергии) уже приближается к 10%-ной планке. Однако следует помнить, что применение новых и возобновляемых источников энергии в значительной степени является пока уделом высокоразвитых государств. Основным преимуществом большинства возобновляемых источников энергии является их экологическая чистота. Забота же об экологии среды обитания начинается, как правило, при достижении довольно высокого уровня экономического развития. К тому же новые и возобновляемые источники энергии в массе своей находятся в фазе высоких издержек производства, на стадии опытно-промышленного применения. Их развитие будет зависеть от того, насколько сильно будут снижаться издержки производства электроэнергии на их основе, а также от мер административного и экономического стимулирования, как это делается в ЕС. Но никогда ни каждый из них в отдельности, ни все они в совокупности не станут играть роль доминирующего ресурса в энергопотреблении, потому что абсолютно большая часть этих энергоресурсов нацелена на производство электроэнергии. Они будут играть в основном важную, но вспомогательную роль пиковых и полупиковых энергоисточников, источников децентрализованного энергоснабжения (в основном – электроснабжения). Мы не можем перевести всю нашу экономику на электроэнергию, всегда останется ниша для жидкого и для газообразного топлива. Но основным итогом их распространения должен стать отход человечества от монополии одного энергоресурса к достаточно диверсифицированной их совокупности.