Смекни!
smekni.com

Финансовый менеджмент (стр. 2 из 7)

Система

Число дней в месяце, d

Число дней

в году

День приема /

выдачи вклада

Неполный месяц

Полный месяц

А) Германия

Факт

30

360

-1

Б) Англия

Факт

Факт

Факт

-1

В) Франция

Факт

Факт

365

-1

Пример: подсчитать срок вклада для двух вариантов:

1) С 20.01 до 15.03

А=12+30+15+-1=56 (из360);

Б=12+28+15-1=54 (из365);

В=12+28+15-1=54 (из 360).

Германская схема (А) наиболее привлекательна для вкладчика (56 дней процента).

2) С 25.06 до 05.09

А=6+30+30+5-1=70 (из 360);

Б=6+31+31+5-1=72 (из 365);

В=6+31+31+5-1=72 (из 360).

Французская схема (В) наиболее привлекательна для вкладчика (72 дня процента).

Если срок хранения вклада в годах (n) не является целым числом и превышает 1 год, то для определения точного результата используется формула
(3)

Пример: n=3,7; na=3; nb=0,7

Расчет процента.


1. Простой процент. (4)

2.

Сложный процент. (5)

Пример: сумма 1000 д.е. положена на депозит сроком на 1,5 года под 300% годовых. Каков будет накопленный процент?

n=1,5

ic=300%

ic=3 (в долях единицы)

1)

д.е.;

2) Более точный расчет

Особые случаи начисления простых и сложных процентов.

1. Простые проценты. Если процентные ставки изменяются во времени,

то
Если во времени изменяется сумма на счете, то общая сумма процентов будет
n – годы; d - дни.

Пример: сделан депозитный вклад по ставке 120% годовых. Счет открыт по германской схеме (К=360). 10 мая положили 20000 д.е., 9 июля сняли 10000 д.е., 8 октября положили 5000 д.е., 27 декабря счет закрыт. Чему равен накопленный процент?

2. Сложные проценты.


Пример: на счет положили 1000 д.е. по сложной ставке (ic=100%). Через год добавили 2000 д.е. Еще через год – счет закрыли. Какова ПрS - ?

Пример: предлагается сдать участок в аренду на 3 года, выбрав один из вариантов оплаты:

1) 10000 д.е. в конце каждого года:

2) 35000 д.е. в конце трехлетнего срока:

Банковская ставка по депозитному вкладу 20% годовых (ic=20%).

Номинальная и эффективная процентная ставка.

Если проценты начисляются один раз в год, то величина (1+i) показывает, во сколько раз возросла начальная сумма за один год. Годовая процентная ставка i называется эффективной. Однако проценты могут начисляться несколько раз в году. В этом случае указывают номинальную годовую процентную ставку (j), и дополнительно указывают, сколько раз в году происходит начисление процентов (m – число начислений процентов в году).


- наращенная сумма в конце года.

При начислении сложного процента в течении n лет получим


Пример: вклад 2000 д.е. осуществлен на 2 года. Номинальная ставка процента jc=100%. Какова будет накопленная сумма?

Так как дана номинальная ставка, то необходимо указать число ежегодных начислений:

m=1 ®

m=2 ®

m=4 ®

m=12 ®

При непрерывном начислении процентов (ежедневном) (используется на рынке производных ценных бумаг (фьючерсные и опционные контракты)):

Эквивалентность процентных ставок.

При финансовых вычислениях можно пользоваться любыми ставками: простыми, сложными, непрерывными. При этом результаты расчетов не должны зависеть от выбора ставки.

Эквивалентные процентные ставки – ставки разного вида, применение которых при одинаковых начальных условиях дает одинаковые финансовые результаты.

Процедура нахождения эквивалентных ставок:

1) Выбирается величина, которую легко рассчитать при использовании различных процентных ставок, обычно FV;

2) Приравниваются 2 выражения, то есть составляют уравнение эквивалентности;

3) Преобразуя, выражают одну процентную ставку через другую.

Пример:

iкв=3%;

iгод-?

а) простые ставки процента, уравнение эквивалентности:

б) сложные ставки процента, уравнение эквивалентности:

Пример: что лучше – положить деньги в банк А, начисляющий 24% годовых или в банк Б, начисляющий 10% годовых каждые полгода по схеме сложного процента.

Эквивалентность простой и сложной ставок.


По простой

По сложной

Уравнения эквивалентности FVпр = FVсл

Современная стоимость денег. Дисконтирование.

Дисконтирование – обратная операция наращению.

Процесс приведения будущей суммы денег к современной стоимости называется дисконтированием.

Из (1)

- коэффициент дисконтирования; i - ставка дисконтирования (доходность при альтернативном вложении).

Пример: будущие доходы распределяются следующим образом

1500 через год;

2000 через 2 года;

3000 через 5 лет.

Чтобы сравнить ценность этих поступлений проведем операцию дисконтирования, то есть приведения к сегодняшнему дню будущей стоимости, при i=20%.

Таким образом, наибольшее предпочтение имеет 2 поток.

Пример: должник должен выплатить 40000 руб. с отсрочкой через 5 лет. Он готов сегодня погасить свой долг из расчета 25% годовых.