К устройствам, автоматизирующим вывод информации, относятся графические видеотерминалы, матричные, струйные и лазерные принтеры, графопостроители (плоттеры). Все они используются в различных случаях.
Для быстрого динамического вывода картографической информации без ее дальнейшего сохранения и с высокой изобразительной способностью используются всевозможные типы графических видеотерминалов. Для быстрого получения твердых копий карт в зависимости от требований к качеству, скорости и материалу носителя применяют разные типы принтеров. А для получения высококачественных материалов для долговременного пользования применяют графопостроители.
В качестве ЭВМ, используемых в современной цифровой картографии, существовали попытки использовать все наиболее известные типы ЭВМ и аппаратные платформы. Зачастую в автоматизированных комплексах используются и персональные компьютеры, и рабочие станции, связанные в ЛВС (локальную вычислительную сеть) и имеющие выход на мейнфрейм, осуществляющий централизованное хранение и обработку информации.
Программное обеспечение, управляющее всеми устройствами и выполняющее многочисленные операции по сбору, хранению и обработке картографической информации, постоянно совершенствуется. Автоматизация в цифровой картографии в наибольшей степени зависит от того, какое ПО разработано и используется на данный момент. Учитывая, что в последние годы наметилась тенденция использования в цифровой картографии не специализированного картографического, а стандартного компьютерного оборудования, ясно, что все специальные функции ложатся на программное обеспечение и его роль в автоматизации картографии достигла практически 100 процентов.
Современное ПО позволяет производить предобработку введенного изображения для повышения его качества, автоматизирует процесс перевода его в форму ЦК, управляет сложными базами картографических данных, представляющими из себя огромное количество информации.
Это ПО дает в руки пользователей мощные аналитические возможности для пространственного анализа информации. Существуют прикладные пакеты, позволяющие моделировать различные процессы природной среды (например, рельефообразующие) и использовать данные моделирования в картографировании явлений.
Велико значение программных систем, используемых в производстве карт. Цветоделение, расчет различных проекций и автоматический подбор лучшей для заданного участка местности, выбор оптимальной компоновки листа и оформления - вот далеко не полный список операций, производимых ПО уже в наше время и поднимающих технологию производства на качественно иной уровень.
Поэтому сегодня хорошо видно повышение роли человека-картографа в автоматизированных комплексах, где его труд применяется для решения каких-то принципиальных вопросов, а рутинные операции возлагаются на технику.
Контрольные вопросы :
1. Провести анализ современного состояния процесса автоматизации при создании цифровой топографической основы для автоматизированных информационных систем государственного кадастра недвижимости.
Глава IV. Технические и программные средства преобразования картографической информации в цифровую форму и ее обработки.
Описав общие особенности и принципы автоматизации в цифровой картографии, попытаемся сделать небольшой обзор конкретных технологических схем, предлагаемых сегодня производителями. Все они базируются на основе ГИС.
Сейчас широко распространено понимание того, что ГИС - это не класс или тип программных систем, а группа технологий, базовая технология ("umbrella technology") для многих компьютерных методов и программ, относящихся к работе с пространственными данными.
ГИС имеет тесные взаимосвязи (отчасти генетические) со многими типами программных средств. С одной стороны, это графические средства САПР, векторные графические редакторы, с другой - реляционные СУБД.
Данное обстоятельство объясняет, почему наряду с полностью самостоятельными системами существуют ГИС, базирующиеся на этих средства. Яркие примеры - MGE, корпорации INTERGRAPH, использующая графический редактор MicroStation и СУБД типа Oracle и ArcСAD (ESRI, Inc.), созданная на основе AutoСАD и внешней СУБД, совместимой с dBASE.
На современном рынке предлагаются ГИС практически для всех компьютерных платформ. В 1993 году число предлагаемых ГИС-пакетов составило около 400, с базовой ценой от $50 до $250,000. В основном цены колеблются в пределах от $400 до $60,000. Разумеется, в большинстве своем предлагаются специализированные системы, разрабатываемые мелкими фирмами. Реально на рынке полнофункциональных ГИС (full GIS) общего назначения серьезных игроков не так много - не более 20. В основном ПО для ГИС разрабатывают специализированные фирмы, только в некоторых случаях это продукты крупных фирм, для которых ГИС - не основной продукт (Intergraph, IBM, Computervision, Westinghouse Electric Corp., McDonnel Douglas, Siemens Nixdorf). По числу инсталляций и по числу известных пакетов резко преобладают ПК (MS-DOS, MS Windows) и UNIX рабочие станции.
Конечно, областью распространения полнофункциональных ГИС общего назначения сейчас в мире являются почти исключительно рабочие станции с UNIX. На ПК функционируют в основном системы с редуцированными возможностями (РС ARC/INFO) или даже не "full GIS", а продукты класса "desktop mapping" (типичный пример - MapInfo). Это определяется, отчасти, спецификой пользователей ПК, которые обычно являются конечными (а для них полноценная система может оказаться "тяжеловесной"). Но главная причина - требования к аппаратуре.
Серьезные проекты с использованием ГИС требуют работы с большими объемами данных - часто необходимо иметь диск емкостью не менее 1 Гбайт. При использовании в ГИС растровых изображений, их обработке требования к величине RAM, ее быстродействию еще более ужесточаются, т.к. требуется обработка в режиме, максимально приближенном к режиму реального времени.
Современные рабочие станции еще кое-как справляются с такой задачей, для ПК же она еще слишком трудна. Вот почему все известные ГИС-пакеты (Arc/Info, MGE и т.д.) в полном объеме функционируют пока только на станциях с RISC-архитектурой. Практически под "всеми известными ГИС" следует понимать как раз эти две (Arc/Info), т.к. при общем доходе от продаж ГИС в мире в 1993 году, составившим $46,000,000, доход ESRI (Arc/Info) составил $126,015,000 (27,10%), а INTERGRAPH (MGE) - $117,180,000 (25,20%). Для сравнения - доходы других компаний не составили >5,5%. Кроме продуктов, относящихся в той или иной степени к ГИС, существует рынок более простых и более специализированных систем, предназначенных исключительно для конвертирования растрового изображения в векторный формат. Следует отметить популярные пакеты I/RAS B, I/RAS C, I/RAS 32, I/GEOVEC, I/VEC (производимые Intergraph Corporation), OptiDRAFT Workstation и MAGNUS (производства Optigraphios Corporation), CADCore Hybrid и CADCore Tracer (Information & Graphios Systems, Inc.), GTX Raster CAD и Expert Conversion Series (GTX Corporation) и ScanEdit (SCAN-GRAPHICX, Inc.). Все фирмы, представленные здесь списком своих продуктов, отличаются стабильным финансовым положением, за исключением, может быть, GTX Corp., что гарантирует в будущем поддержку, сопровождение и модернизацию продуктов. Цены на предоставленные ПО находятся в пределах от $1,995.00 у GTX Raster CAD (программа интерактивной дигитализации для РС) до $15,000.00 у I/VEC (ПО автоматического преобразования, работающее в пакетном режиме, для Intergraph UNIX-workstation).
Это ПО способно выполнять гибридное растрово-векторное редактирование и дигитализацию в различных режимах (ручной, полуавтоматический, автоматический). Базируется в основном на РС и заметная доля на Sun SPARCstation. Среди других платформ - DEC, HP, RISC 6000.
Для рассмотрения остановимся подробнее на технологии фирмы INTERGRAPH, как одной из наиболее передовых фирм в области геоинформатики. Один из ключевых моментов этой технологии - преобразование исходных документов в растровую форму, попросту говоря - сканирование. В процессе работы сканера данные в форме изображения на документе преобразовываются в компьютерный файл, который может быть отредактирован, воспроизведен, передан по сети, отпечатан или архивирован. Сканерный механизм использует узкий пучок света для получения сканированного изображения, которое может представляться в цветном (чаще RGB), полутоновом (серая шкала) и бинарном виде. Но в процесс сканирования нужно также включить все возможные операции, вовлекаемые в перевод изображения на документе в компьютерный формат, пригодный для использования. А это, кроме непосредственно считывания информации сканирующим механизмом, процесс корреляции, квантования, сжатия, преобразования данных, их передачи в компьютер и, наконец, файловые манипуляции для создания соответствующего файла. Некоторые из этих операций выполняются аппаратно схемами, встроенными в сканер. Другие осуществляются чисто программным путем. Баланс между ними определяет стоимость и производительность системы, причем зависимость обратно пропорциональная. Ранние, а также более дешевые модели все операции, кроме, разве что, считывания светового сигнала и яркостной коррекции, проводимой для компенсации неоднородностей при освещении соседних элементов изображения, возлагали на компьютер, поглощая его вычислительные и другие ресурсы. Современные промышленные сканеры производства одного из подразделений Intergraph (ANA Tech), все операции по обработке совершают автономно, а в компьютер передают данные уже в формате записываемого файла. Таким образом, экономится место на диске - от единиц до нескольких тысяч мегабайт (в зависимости от размера документа, изображения на нем и режима сканирования). Уменьшается время на обработку документа, освобождается процессор, что очень важно в многозадачных средах и при работе компьютера в сети.