Смекни!
smekni.com

The manager as a teacher: selected aspects of stimulation of scientsfsc thinking (стр. 5 из 20)

Simple systemic functional unit (SFU). The system may consist of any quantity of functional elements/executive component, provided that each of the latter can participate (contribute to) the achievement of the goal/objective and the quantity of such components is sufficient enough for realizationof this goal.The minimal system is such group of “k” elements which, in case of removal of at least one of the elements from its structure, loses the quality inherent in this group of elements, but not present in any of the given “k” elements. Such group of elements is a simple systemic functional unit (simple, not composite SFU), the minimal elementary system having some property (ability to make action) which is not present in any ofits separate elements. Any SFU reacts to external influence under the “all-or-none” law. This law is resulting from the definition of simple SFU (removal of any of its elements would terminate its function as a system) and discrecity of its structure. Any of its elements may either be or not be a part of simple SFU. And since simple SFU by definition consists of finite and minimal set of function elements and all of them should be within the SFU structure and be functional (operational), termination of functioning of any of these elements would terminate the function of the entire SFU as a system. Regardless of the force of external influence, but given the condition of its being in excess of a certain threshold, the result of its performance will be maximal, ( “all”). If there is no external influence, the SFU would nowise prove out (would not react, “none”). Simple SFU, despite its name, may be arbitrary complex – from elementary minimal SFU to maximal complex ones. The molecule of any substance consists of several atoms. Removal of any atom transforms this molecule from one substance into another. And even each atom represents a very complex constitution. Removal of any of its elements transforms it into an ion, other atom or other isotope. A soldier is a simple SFU of the system called “the army”. A soldier is a human being’s body plus full soldier’s outfit. The body of a human being is an extremely complex object, but removal of any of its parts would render the soldier invalid. At that, the soldier’s outfit/equipment is multi-component as well. But the equipment cannot shoot without man and the man cannot shoot without the equipment. They can only carry out together the functions inherentin SFU named “soldier”. Despite the internal complexity which may be however big, simple SFU is a separate element which looks as a whole unit with certain single property (quality) to fulfill one certain action elementary in relation to the entire system, i.e. to grasp a ball, molecule, push a portionof blood, produce force/load of 0.03 grams, provide living conditions for the animal (for example, one specific unit of forest area) or to an individual (apartment), fire a shot, etc. Any SFU, once it is divided into parts, ceases to be an SFU for the designated goal. It is due to interaction of the parts only that the group of elements can show its worth as SFU. When something breaks a good owner would always think at first where in his household the fragments may be applied and only thereafter he would throw them out, because one broken thing (one SFU) can be transformed into another, more simple one (another SFU). Haemoglobin is an element of blood circulation system and serves for capturing and subsequent return of oxygen. Hence, haemoglobin molecules are the SFU of erythrocytes. Ligands of haemoglobin molecules are the SFU of haemoglobin, as each of them can serve a trap for oxygen molecules. However, further division of ligand brings to a stop the functionof retention of oxygen molecules, etc. The SFU analogues in an inorganic nature/abiocoen are, for example, all material particles possessing ability to lose their properties when dividing – elementary particles (?), atoms, molecules, etc. Viruses may probably be the systemic functional units of heredity (FUH). Thus, it is likely that at first polymeric molecules of DNA type came into being in the claypan strata or even in the interplanetary dust or on comets, based on a type of auto-catalytic Butler’s reaction, i.e. synthesis of various sugars including ribose from formaldehyde in the presence of Ca and Mg ions, ribose being a basis for the creation of RNA and DNA, and thereafter cellular structures emerged. These examples of various concrete SFU show that SFU is not something indivisible, since each of them is multicomponent and therefore can be divided into parts. Only intra-atomic elementary particles may pretend to be true SFU that are the basis of the whole of matter of our entire world as it is still impossible to split them into parts. It is for this reason that they are called elementary. It may well be that they are of a very complex structure, too, but formed not from the elements of physical nature, but of some different matter, and are the result of action of performance of systems of non-physical nature, or rather not of the forms of the World of ours. It is indicative of the existence of binate virtual particles, for example, positron and electron, emerging ostensibly from emptiness, vacuum and disappearing thereto after all. We cannot cut paper with scissors made of the same paper material. It’s unlikely that we can “cut” elementary particles with the “scissors” made of the same matter either.

Elementary block of management (direct positive connection/bond, DPC). In order for any SFU to be able to perform it should contain certain elements for implementation of its actions according to the laws of conservation and cause-and-effect limitations. To implement target-oriented actions the system should contain performance /“executive”/ elements and in order to render the executive element’s interaction target-oriented, the system should contain the elements (block) of management/control. Executive elements (effectors) carry out certain (target-oriented) action of a system to ensure the achievement of the preset result of action. The result of action would not come out by itself. In order to achieve it performance of certain objects is required. On the example of plain with a feeler /trial balloon/ such elements are plains themselves. But it (the executive element) exists on itself and produces its own results of action in response to certain influences external with respect to it. It will react if something influences upon it and will not react in the absence of any influence. Interaction with its other elements would pertain to it so far as the results of action of other elements are the external influence in respect of it per se and may invoke its reaction in response to these influences. This reaction will already be shown in the form of its own result of action which would also be the external influence in respect to other elements of the system, and no more than that. Not a single action of any element of the system can be the result of action of the system itself by definition. It does not matter for any separate executive element whether or not the preset condition (the goal of the system) was fulfilled haphazardly, whether or not the given group of elements produced a qualitatively new preset result of action or something prevented it from happening. It in no way affects the way the executive elements “feel”, i.e. their own functions, and none of their inherent property would force them to “watch” the fulfillment of the general goal of the system. They are simply “not able” of doing so. The elements of management (the control block) are needed for the achievement of the particular preset result, rather than of any other result of action. Since the goal is the reaction in response to specific external influence, at first there is a need to “feel” it, to segregate it from the multitude of other nonspecific external influences, “make decision” on any specific actions and begin to perform. If, for example, the SFU reacts to pressure it should be able to “feel” just pressure (reception), rather than temperature or something else. For this purpose it should have a special “organ” (receptor) which is able of doing so. In order to react only to specific external influence which may pertain to the fulfillment of the goal, the SFU should not only have reception, but also single it out from all other external influences affecting it (selection). For this purpose it should have a special organ (selector or analyzer) which is able to segregate the right signal from a multitude of others. Thereafter, having “felt” and segregated the external influence, it should “make decision” that there is a need to act (decision-making). For this purpose it should have a special or decision-making organ able of making decisions. Then it should realize this decision, i.e. force the executive elements to act (implementation of decision). For this purpose it should have elements (stimulators) with the help of which it would be possible to communicate decision to the executive elements. Therefore, in order to react to certain external influence and to achieve the required result of actionit is necessary to accomplish the following chain of guidingactions: reception → selection → decision-making → implementation of decisions (stimulation). What elements should carry out this chain of guiding actions? The executive elements (for example, plains) cannot do it, because they perform the action per se, for example, the capturing action, but not guiding actions. For this reason they are also calledexecutive elements. All guiding actions should be accomplished by guiding elements (the control block) and theseshould be a part of SFU. The control blockconsists of: “X” receptor (segregates specific signal and detects the presence of external influence); afferent channels (transfer of information from the receptor to analyzer); the analyzer-informant (on the basis of the information from the “Х” receptor makes decisions on the activation of executive elements); efferent cannels (of a stimulator) (implementation of decision, channeling of the guiding actions to the effectors).