Анализ выпуска продукции. Предприятие выпускает три вида изделия, используя три вида ресурсов.
Таблица 2.1
Ресурсы | Ед.изм. | Виды изделий | Суточный объем ресурса | ||
П1 | П2 | П3 | |||
1.Материалы | д.е. | 2 | 8 | 5 | 800 |
2 Трудовые | чел.-дней | 8 | 5 | 8 | 1000 |
3. Оборудование | ст.-час | 2 | 3 | 6 | 2000 |
Цена ед. изделия | д.е. | 75 | 65 | 25 | |
Себестоимость ед. изделия | д.е. | 60 | 15 | 38 |
1. Определить входные и выходные потоки и построить логистическую систему производства.
2. Составить математические модели процессов производства и найти оптимальные потоки, максимизирующие объем производства в стоимостном выражении (целевая функция L1).
3. Провести экономический анализ оптимального процесса по последней симплекс-таблице.
4. Найти условие устойчивости структуры оптимального решения по отношению к изменениям: а) ресурсных входных потоков, б) коэффициентов целевой функции Cj.
5. Определить оптимальные потоки продукции, минимизирующие затраты производства при дополнительном условии выпуска продукции не меньше 45 % от максимально возможного (L1 max).
Примечание: 1. Задача решается аналитическим методом с применением симплекс-таблиц. 2. Работу сопровождать подробными записями и в выводах приводить экономическое наполнение полученных данных.
Решение:
Входной поток – материалы 800 д.е. / день. Выходной поток – готовая продукция. В зависимости от объемов производства.
Составим математическую модель производства. Пусть х1 , х2 , х3 – объемы производства изделий П1, П2 и П3 соответственно. Тогда можно сформулировать ограничения на выпуск продукции исходя из ограниченности ресурсов:
2х1 + 8х2 + 5х3 ≤ 8008х1 + 5х2 + 8х3 ≤ 1000
3х1 + 3х2 + 6х3 ≤ 2000
х1 ≥ 0 ; х2 ≥ 0; х3 ≥ 0
L1 = 75х1 + 65х2 + 25х3 → max
Сиcтема отражает ограничения на потребляемые ресурсы. А целевая функция показывает стоимость произведенной продукции, которую надо максимизировать.
Для решения задачи симплекс-методом представим систему в виде таблицы. Базис задачи составляют дополнительные переменные x4 , x5 , x6 .
Таблица 2.2
Базис | х1 | х2 | х3 | х4 | х5 | х6 | bi | bi/ ai1 |
х4 | 2 | 8 | 5 | 1 | 0 | 0 | 800 | 400 |
х5 | 8 | 5 | 8 | 0 | 1 | 0 | 1000 | 125 |
х6 | 3 | 3 | 6 | 0 | 0 | 1 | 2000 | 667 |
L1 | – 75 | – 65 | – 25 | 0 | 0 | 0 | 0 |
Найдем ключевую переменную. Ключевой будет переменная, у которой в строке целевой функции минимальное значение, т.е. x1 .
Теперь найдем ключевую строку. Ключевой строкой будет та, у которой отношение значения в столбце ресурсов к элементу ключевого столбца будет минимальным. Найдем эти отношения для всех строк:
800 / 2 = 400 ; 1000 / 8 = 125 ; 2000 / 3 = 667 .
Т.о. ключевой строкой является строка x5.
Элемент находящийся на пересечении ключевого столбца и ключевой строки называется ключевым элементом. Делим всю ключевую строку на ключевой элемент. Теперь вычитаем ключевую строку из всех оставшихся строк системы, так чтобы в ключевом столбце все элементы, кроме ключевого, были нулевыми.
Построим полученную таблицу:
Таблица 2.3
Базис | х1 | х2 | х3 | х4 | х5 | х6 | bi | bi/ ai2 |
х4 | 0 | 6,75 | 3 | 1 | – 0,25 | 0 | 550 | 81,48 |
х1 | 1 | 0,625 | 1 | 0 | 0,125 | 0 | 125 | 200 |
х6 | 0 | 1,125 | 3 | 0 | ‑0,375 | 1 | 1625 | 1444,44 |
L1 | 0 | ‑18,125 | 50 | 0 | 9,375 | 0 | 9375 |
Исключаем из рассмотрения ключевой столбец (переменная x1).
Найдем новую ключевую переменную – x2 и новую ключевую строку:
550 / (6,75) = 81,48 ; 125 / 0,625 = 200 ; 1625 / 1,125 = 1444,44 .
Т.о. ключевой строкой является строка (x4).
Делим всю ключевую строку на ключевой элемент. Теперь вычитаем ключевую строку из всех оставшихся строк системы, так чтобы в ключевом столбце все элементы кроме ключевого были нулевыми. Построим полученную таблицу:
Таблица 2.4
Базис | х1 | х2 | х3 | х4 | х5 | х6 | bi |
х2 | 0 | 1 | 0,444 | 0,148 | ‑0,037 | 0 | 81,48 |
х1 | 1 | 0 | 0,7225 | ‑0,0925 | 0,148 | 0 | 74,075 |
х6 | 0 | 0 | 2,5 | ‑0,1665 | ‑0,333 | 1 | 1533,335 |
L1 | 0 | 0 | 8,0475 | 2,6825 | 9,704 | 0 | 10850 |
Все коэффициенты при переменных в строке целевой функции неотрицательные, это означает что достигнуто оптимальное решение. Значения переменных записаны в столбце ресурсов в той строке, на пересечении которой со столбцом переменной стоит не нулевой элемент. Получено оптимальное решение : x1 = 74 , x2 = 81,5 , x3 = 0 , x4 = 0 , x5 = 0 , x6=1533, максимум целевой функции
L1= 10850 (д.е.).
Проверим максимум функции:
L1 = 75 * 74 + 65 * 81,5 + 25 * 0 = 10850 д.е.
Т.е. для максимизации объема продаж в стоимостном выражении предприятие должно выпускать 74 единицы продукции П1 и 81,5 единицы продукции П2.
По последней симплекс таблице видим, что полностью израсходованы материалы и трудовые ресурсы. Оборудование может еще работать 1533 станко-часов.
Определим интервалы устойчивости двойственных оценок по отношению к изменению сырья каждого из видов в отдельности.
Составим матрицу А из элементов столбцов, соответствующих переменных x4 , x5 , x6 оптимальной симплексной таблицы:
Умножим матрицу А на вектор :
где Δb1 , Δb2 , Δb3 – предполагаемое изменение соответствующего вида сырья
Запишем условие неотрицательности компонент полученного вектора AB, которое будет одновременно условием устойчивости базисных оценок.
Определим при каких значениях Δb1 , Δb2 , Δb3 эта система неравенств верна.
Если Δb1 = Δb2 = 0 , то решая систему получим Δb3 ≥ – 1533 .
Если количество доступных станко-часов работы оборудования будет уменьшено в пределах 1533 единиц или увеличено произвольным образом, то двойственное решение системы не измениться.
Если Δb1 = Δb3 = 0 , то решая систему получим: – 500 ≤ Δb2 ≤ 2003.
Если количество доступных человеко-дней будет уменьшено в пределах 500 единиц или увеличено не больше чем на 2003единиц, то двойственное решение системы не измениться.
Если Δb2 = Δb3 = 0 , то решая систему получим: – 550 ≤ Δb1 ≤ 800
Если количество материалов будет уменьшено в пределах 550 единиц или увеличено не больше чем на 800единиц, то двойственное решение системы не измениться.
Проведем анализ устойчивости к изменению коэффициентов целевой функции.
Составим систему по последней симплекс таблице:
Пусть C1 ≠ 0, а остальные равны нулю. Тогда решение системы – 58,75 ≤ C1 ≤ 29, т.е. при уменьшении цены товара П1 на 58,75 д.е. и при увеличении на 29 д.е. структура оптимального решения не измениться.
Пусть C2 ≠ 0, а остальные равны нулю. Тогда решение системы – 18,13 ≤ C2 ≤ 235, т.е. при уменьшении цены товара П2 на 18,13 д.е. и при увеличении на 235 д.е. структура оптимального решения не измениться.
Пусть C3 ≠ 0, а остальные равны нулю. Тогда решение системы – 58,04 ≤ C3, т.е. при уменьшении цены товара П3 на 58,04 д.е. и при ее увеличении.
Сформулируем двойственную задачу.
Пусть у1 , у2 , у3 цены (оценки) единицы ресурсов каждого типа, чтобы при заданных количествах ресурсов и стоимости изделий общие затраты на производство Z были минимальными.
2y1 + 8y2 + 3y3 758y1 + 5y2 + 3y3
655y1 + 8y2 + 6y3
25y1
0 , y2 0 , y3 0