Р
20 90 ERR
Рис. 3. Распределение вероятностей для проектов А и В
Очевидно, чем более «сжат» график, тем выше вероятность, соответствующая среднему ожидаемому доходу (ЕRR), и вероятность того, что величина реальной доходности окажется достаточно близкой к ЕRR. Тем ниже будет и риск, связанный с соответствующим проектом. Поэтому меру «сжатости» графика можно принять за достаточно корректную меру риска.
Меру «сжатости» определяет величина, которая в теории вероятности носит название «среднеквадратичного отклонения» —σ— и рассчитывается по следующей формуле:
σ = ∑(IRRi - IRR)²pi (1.2)
Чем меньше величина а, тем больше «сжато» соответствующее распределение вероятностей, и тем менее рискован проект. При этом для нормального распределения вероятность «попадания» в пределы ERR ± σ составляет 68,26%.
Рассчитаем значение σ для рассматриваемых проектов А и В. Проект А:
σ = (90 - 20)2 0,25 + (20 - 20)2 0,5 + (-50 - 20)2 0,25 = 49,5%.
Проект В: ________________
σ = (25 - 20)20,25 + (20 - 20)20,5 + (15 - 20)20,25 = 3,5%.
Как видим, для второго проекта с вероятностью 68,26% можно ожидать величину доходности IRR= 20% + 3,5%, т.е. от 16,5% до 23,5%. Риск здесь минимальный. Проект А гораздо более рискованный. С вероятностью 68,26% можно получить доходность от —29,5% до 69,5%. Считается, что среднерискованной операции соответствует значение σ около 30%.
В рассмотренном примере распределение вероятностей предполагалось известным заранее. Во многих ситуациях бывают доступны лишь данные о том, какой доход приносила некая финансовая или хозяйственная операция в предыдущие годы.
Например, доступная информация может быть представлена в следующем виде (см. табл. 3).
Таблица 3. Динамика 1КК
Год | IRR |
1995 | 10% |
1996 | 8% |
1997 | 0 |
1998 | 15% |
В этом случае для расчета среднеквадратичного отклонения σ используется такая формула
σ = ∑(IRRi -ARR)2/n. (1.3)
Здесь n — число лет, за которые приведены данные, а ARR — среднее арифметическое всех IRR за n лет — рассчитывается по формуле:
n
ARR=∑IRRi/n. (1.4)
i
Для нашего примера получаем:
ARR = (10 + 8 + 15)/4 = 8,25%.
σ= [(10 - 8,25)2 + (8 - 8,25)2 + (0 - 8,25)2 + (15 -8,25)] / 4 = 5,4%.
Еще одной величиной, характеризующей степень риска, является коэффициент вариации СУ. Он рассчитывается по следующей формуле:
СV = σ/ERR(1.5)
и выражает количество риска на единицу доходности. Естественно, чем выше СV, тем выше степень риска.
В рассмотренном чуть раньше примере для проектов А и В коэффициенты вариации равны соответственно:
СVА = 49,5/20 = 2,475;
СVВ = 3,5/20 = 0,175.
В данной ситуации найденные коэффициенты уже не добавляют существенной информации и могут служить лишь для оценки того, во сколько раз один проект рискованнее другого: 2,475/0,175 = 14. Проект А в 14 раз рискованнее проекта В.
Коэффициент вариации необходимо знать в случае, когда требуется сравнить финансовые операции с различными ожидаемыми нормами доходности ЕКК.
Пусть для проектов С и В распределение вероятностей задается следующей таблицей 4:
Таблица 4. Распределение вероятностей для проектов С и В
Состояние экномики | Вероятность данного состояния | Проект А, 1КК | Проект В,тк |
Подъем | Р1=0,2 | 30% | 115% |
Норма | Р2 = 0,6 | 20% | 80% |
Спад | РЗ = 0,2 | 10% | 45% |
Рассчитаем для обоих проектов ERR, σ и СV. По формуле (1.1) получаем:
ERRс = 30x0,2 + 20x0,6 + 10x0,2 = 20%;
ERRD= 115x0,2 + 80x0,6 + 45x0,2 = 80%.
По формуле (1,2):
σ с = (30 - 20) 2 0,2 + 0 + (10 - 20) 2 0,2 = 6,3%;
σD = |
(115- 80) 2 0,2 + 0 + (45 - 70) 2 0,2 = 22,14%.
Таким образом, у проекта D величина а намного больше, но при этом больше и значение ERR. Для того, чтобы можно было принять решение в пользу того или иного проекта, необходимо рассчитать коэффициент СV, отражающий соотношение между ERR и σ.
По формуле (1.5) получаем:
СVС = 6,3/20 = 0,315;
СVD = 22,14/80 = 0,276.
Как видно, несмотря на достаточно большое значение σ? величина СVу проекта D меньше, т.е. меньше риска на единицу доходности, что достигается за счет достаточно большой величины ERRD.
В данном случае расчет коэффициента СV дает возможность принять решение в пользу второго проекта.
Итак, мы получили два параметра, позволяющие количественно определить степень возможного риска: среднеквадратичное отклонение σ и коэффициент вариации СV. Но при этом мы вынуждены отметить, что определение степени риска не всегда позволяет однозначно принять решение в пользу того или иного проекта. Поэтому рассмотрим еще один пример.
Известно, что вложение капитала в проекты К и L в последние четыре года приносило следующий доход (см. табл. 5).
Определить, в какой из проектов вложение капитала связано с меньшим риском.
Таблица 5. Доходность проектов К и L в динамике
Год | Доходность предприятия К | Доходность предприятия L |
1995 | 20% | 40% |
1996 | 15% | 24% |
1997 | 18% | 30% |
1998 | 23% | 50% |
Решение
По формуле (1.4) рассчитаем среднюю норму доходности для обоих проектов.
АRRК = (20 + 15 + 18 + 23) / 4 = 19%.
АRRL = (40 + 24 + 30 + 50) / 4 = 36%.
По формуле (1.3) найдем величину среднеквадратичного отклонения ____________________________
σ к = [(20 - 19)2 + (15 - 19)2 + (18 - 19)2 + (23 - 19)] / 4 = 2,9%.
σL= [(40 - 36) 2 + (24 - 26) 2 + (30 - 36) 2 + (50 - 36)] / 4 = 9,9%.
Видим, что у проекта L средняя норма доходности выше, но при этом выше и величина σ. Поэтому необходимо рассчитать коэффициент вариации СV.
По формуле (1.5) получаем:
CVK=2,9/19=0,15;
СVL= 9,9 / 36 = 0,275.
Коэффициент вариации для проекта L выше почти в 2 раза, следовательно, вложение в этот проект почти вдвое рискованнее.
Однако данные таблицы 5 говорят, что минимальная доходность проекта L выше максимальной доходности проекта К. Очевидно, что вложение в проект L в любом случае более рентабельно. Полученные же значения σ и СV означают не возможность получения более низкой доходности, а возможность неполучения ожидаемой доходности от проекта L.
СУЩНОСТЬ И СОДЕРЖАНИЕ РИСК-МЕНЕДЖМЕНТА
Риск — это финансовая категория. Поэтому на степень и величину риска можно воздействовать через финансовый механизм. Такое воздействие осуществляется с помощью приемов финансового менеджмента и особой стратегии. В совокупности стратегия и приемы образуют своеобразный механизм управления риском, т. е. риск-менеджмент. Таким образом, риск-менеджмент представляет собой часть финансового менеджмента.
В основе риск-менеджмента лежат целенаправленный поиск и организация работы по снижению степени риска, искусство получения и увеличения дохода (выигрыша, прибыли) в неопределенной хозяйственной ситуации.
Конечная цель риск-менеджмента соответствует целевой функции предпринимательства. Она заключается в получении наибольшей прибыли при оптимальном, приемлемом для предпринимателя соотношении прибыли и риска.
Риск-менеджмент представляет собой систему управления риском и экономическими, точнее, финансовыми отношениями, возникающими в процессе этого управления.
Риск-менеджмент включает в себя стратегию и тактику управления.
Под стратегией управления понимаются направление и способ использования средств для достижения поставленной цели. Этому способу соответствует определенный набор правил и ограничений для принятия решения. Стратегия позволяет сконцентрировать усилия на вариантах решения, не противоречащих принятой стратегии, отбросив все другие варианты. После достижения поставленной цели стратегия как направление и средство ее достижения прекращает свое существование. Новые цели ставят задачу разработки новой стратегии.
Тактика — это конкретные методы и приемы для достижения поставленной цели в конкретных условиях. Задачей тактики управления является выбор оптимального решения и наиболее приемлемых в данной хозяйственной ситуации методов и приемов управления.
Риск-менеджмент как система управления состоит из двух подсистем: управляемой подсистемы (объекта управления) и управляющей подсистемы (субъекта управления).
Объектом управления в риск-менеджменте являются риск, рисковые вложения капитала и экономические отношения между хозяйствующими субъектами в процессе реализации риска. К этим экономическим отношениям относятся отношения между страхователем и страховщиком, заемщиком и кредитором, между предпринимателями (партнерами, конкурентами) и т. п.
Субъект управления в риск-менеджменте — это специальная группа людей (финансовый менеджер, специалист по страхованию, аквизитор, актуарий, андеррайтер и др.), которая посредством различных приемов и способов управленческого воздействия осуществляет целенаправленное функционирование объекта управления.
Процесс воздействия субъекта на объект управления, т. е. сам процесс управления, может осуществляться только при условии циркулирования определенной информации между управляющей и управляемой подсистемами. Процесс управления независимо от его конкретного содержания всегда предполагает получение, передачу, переработку и использование информации. В риск-менеджменте получение надежной и достаточной в данных условиях информации играет главную роль, так как оно позволяет принять конкретное решение по действиям в условиях риска.