В общем линейная модель регрессионного анализа имеет вид:
где φj - некоторая функция его переменных -x1,x2 . . ..,xk , έ - случайная величина с нулевым математическим ожиданием и дисперсией σ2 .
В регрессионном анализе вид уравнения регрессии выбирают исходя из физической сущности изучаемого явления и результатов наблюдения.
Оценки неизвестных параметров уравнения регрессии находят обычно методом наименьших квадратов. Ниже остановимся более подробно на этой проблеме.
Двумерное линейное уравнение регрессии. Пусть на основании анализа исследуемого явления предполагается, что в «среднем» у есть линейная функция от х, т. е. имеется уравнение регрессии
у=М(у/х)=β 0+ β1 х)
где М(у1х) - условное математическое ожидание случайной величины у при заданном х; β0 иβ1 - неизвестные параметры генеральной совокупности, которые надлежит оценить по результатам выборочных наблюдений.
Предположим, что для оценки параметров β0 иβ1 из двухмерной генеральной совокупности (х, у) взята выборка объемом n, где (х, у,) результат i-го наблюдения (i = 1, 2,..., n). В этом случае модель регрессионного анализа имеет вид:
yj= β 0+ β1x+εj.
где εj.- независимые нормально распределенные случайные величины с нулевым математическим ожиданием и дисперсией σ2 , т. е. М εj. = 0;
Dεj.= σ2 для всех i= 1, 2,..., n.
Согласно методу наименьших квадратов в качестве оценок неизвестных параметров β0 иβ1 следует брать такие значения выборочных характеристик b0 и b1, которые минимизируют сумму квадратов отклонений значений результативного признака уi от условного математического ожидания ỹi
Методику определения влияния характеристик маркетинга на прибыль предприятия рассмотрим на примере семнадцати типичных предприятий, имеющих средние размеры и показатели хозяйственной деятельности.
При решении задачи учитывались следующие характеристики, выявленные в результате анкетного опроса как наиболее значимые (важные):
• инновационная деятельность предприятия;
• планирование ассортимента производимой продукции;
• формирование ценовой политики;
• реклама;
• взаимоотношения с общественностью;
• система сбыта;
• система стимулирования работников.
На основе системы сравнений по факторам были построены квадратные матрицы смежности, в которых вычислялись значения относительных приоритетов по каждому фактору: инновационная деятельность предприятия, планирование ассортимента производимой продукции, формирование ценовой политики, реклама, взаимоотношения с общественностью, система сбыта, система стимулирования работников.
Оценки приоритетов по фактору «взаимоотношения с общественностью» получены в результате анкетирования специалистов предприятия. Приняты следующие обозначения: > (лучше), > (лучше или одинаково), = (одинаково), < (хуже или одинаково), <
Далее решалась задача комплексной оценки уровня маркетинга предприятия. При расчете показателя была определена значимость (вес) рассмотренных частных признаков и решалась задача линейного свертывания частных показателей. Обработка данных производилась по специально разработанным программам.
Далее рассчитывается комплексная оценка уровня маркетинга предприятия — коэффициент маркетинга, который вносится в таблице 1. Кроме того, в названую таблицу включены показатели, характеризующие предприятие в целом. Данные в таблице будут использованы для проведения регрессионного анализа. Результативным признаком является прибыль. В качестве факторных признаков наряду с коэффициентом маркетинга использованы следующие показатели: объем валовой продукции, стоимость основных фондов, численность работников, коэффициент специализации.
Таблица 1 – Исходные данные для регрессионного анализа
По данным таблицы и на основе факторов с наиболее существенными значениями коэффициентов корреляции были построены регрессионные функции зависимости прибыли
от факторов.Уравнение регрессии в нашем случае примет вид:
О количественном влиянии рассмотренных выше факторов на величину прибыли говорят коэффициенты уравнения регрессии. Они показывают, на сколько тысяч рублей изменяется ее величина при изменении факторного признака на одну единицу. Как следует из уравнения, увеличение коэффициента комплекса маркетинга на одну единицу дает прирост прибыли на 1547,7 тыс. руб. Это говорит о том, что в совершенствовании маркетинговой деятельности кроется огромный потенциал улучшения экономических показателей предприятий.
При исследовании эффективности маркетинга наиболее интересным и самым важным факторным признаком является фактор Х5 — коэффициент маркетинга. В соответствии с теорией статистики достоинство имеющегося уравнения множественной регрессии является возможность оценивать изолированное влияние каждого фактора, в том числе фактора маркетинга.
Результаты проведенного регрессионного анализа имеют и более широкое применение, чем для расчета параметров уравнения. Критерий отнесения (КЭф,) предприятий к относительно лучшим или относительно худшим основан на относительном показателе результата:
где Yфактi – фактическая величина i-го предприятия, тыс. руб.;
Yрасчi –величина прибыли i-го предприятия, полученная расчетным путем по уравнению регрессии
В терминах решаемой задачи величина носит название «коэффициент эффективности». Деятельность предприятия можно признать эффективной в тех случаях, когда величина коэффициента больше единицы. Это означает, что фактическая прибыль больше прибыли, усредненной по выборке.
Фактические и расчетные значения прибыли представлены в табл. 2.
Таблица 2 – Анализ результативного признака в регрессионной модели
Анализ таблицы показывает, что в нашем случае деятельность предприятий 3, 5, 7, 9, 12, 14, 15, 17 за рассматриваемый период можно признать успешной.
Для характеристики влияния изменений Х на вариацию У служат методы регрессионного анализа. В случае парной линейной зависимости строится регрессионная модель
Уi = a0 +a1 *Xi + εi, I=1, …,n
где n — число наблюдений;
a0 ,a1 — неизвестные параметры уравнения;
εi, — ошибка случайной переменной У. Уравнение регрессии записывается как
Уi теор.= a0 +a1 *Xi
Параметры a0 и a1 оцениваются с помощью процедур, наибольшее распространение из которых получил метод наименьших квадратов. Его суть заключается в том, что наилучшие оценки когда, сумма квадратов отклонений эмпирических значений зависимой переменной от вычисленных по уравнению регрессии должна быть минимальной. Сумма квадратов отклонений является функцией параметров a0 и a1. Ее минимизация осуществляется решением системы уравнений
na0 + a1ΣX= ΣY;
a0Σ + a1ΣX2 =ΣXY.
Аппарат линейной регрессии достаточно хорошо разработан и, как правило, имеется в наборе стандартных программ оценки взаимосвязи для ЭВМ. Важен смысл параметров: а1-это коэффициент регрессии, характеризующий влияние, которое оказывает изменение Х на У. Он показывает, на сколько единиц в среднем изменится У при изменении Х на одну единицу. Если а1 больше 0, то наблюдается положительная связь. Если а, имеет отрицательное значение, то увеличение Х на единицу влечет за собой уменьшение У в среднем на a1. Параметр a1 обладает размерностью отношения У к X.
Параметр a0 - это постоянная величина в уравнении регрессии. На наш взгляд, экономического смысла он не имеет, но в ряде случаев его интерпретируют как начальное значение У.
Например, по данным о стоимости оборудования Х и производительности труда У методом наименьших квадратов получено уравнение
У=- 12,144- 2,08Х.
Коэффициент a0 означает, что увеличение стоимости оборудования на 1 млн руб. ведет в среднем к росту производительности труда на 2,08 тыс. руб.
Значение функции У = a0 +a1Х называется расчетным значением и на графике образует теоретическую линию регрессии.
Смысл теоретической регрессии в том, что это оценка среднего значения переменной У для заданного значения X.
Парная регрессия могут рассматриваться как частный случай отражения связи некоторой зависимой переменной, с одной стороны, и одной из множества независимых переменных — с другой. Когда же требуется охарактеризовать связь всего указанного множества независимых переменных с результативным признаком, говорят о множественной регрессии.
Рассмотрим вопрос о регрессии. В ряде случаев именно от его решения — (Оценки уравнений регрессии — зависят оценки тесноты связи, а они, в свою очередь, дополняют результаты регрессионного анализа. Прежде всего следует определить перечень независимых переменных X, включаемых в уравнение. Это должно делаться на основе теоретических положений. Список Х может быть достаточно широк и ограничен только исходной информацией. Можно выбрать наилучшую форму связи. Этот традиционный прием, называемый пошаговой регрессией, если он не противоречит качественным посылкам, достигает приемлемых результатов. Первоначально обычно берется линейная модель множественной регрессии