Смекни!
smekni.com

Нові тенденції і прикладні аспекти інженерії знань (стр. 6 из 6)

Таким чином, створення бази знань експертної системи сприяє глибшому засвоєнню знань, а візуальна специфікація підсилює прозорість і наочність уявлень.

Коли комп’ютери використовуються в навчанні як інструмент пізнання, а не як контрольно-навчальні системи (навчальні комп’ютери), вони розширюють можливості автоматизованих навчальних систем, одночасно розвиваючи розумові здібності і знання учнів. Результатом такої співпраці учня і комп’ютера є значне підвищення ефективності навчання.

Комп’ютери не можуть і не повинні управляти процесом навчання. Комп’ютери повинні використовуватися для того, щоб допомогти учням придбати знання.


Висновок

У даній роботі розглянуті прикладні аспекти інженерії знань, використання латентних структур знань та психосемантики для видобування глибинних знань, а також описаний метод репертуарних решіток, керування знаннями та проектування бази знань.

Всі ці методи створені і використовуються для спрощення «співпраці» користувача з комп’ютером, для мінімізації труднощів видобування та формалізації знань. Таким чином, розглянуті основні шляхи розв’язання достатньо поширених на сьогодні проблем інженерії знань.


Список використаних джерел

1. Петренко В.Ф. Введение в эксперементальную психосемантику: исследование форм репрезентации в обыденном сознании / В.Ф. Петренко. – М.: МГУ, 1983. – 175 с.

2. Анисимов А.В. система обработки текстов на естественном языке / А.В. Анисимов, А.А. Марченко // Научно-теоретический журнал «Искуственный интелект», ІПШІ «Наука і освіта». – 2002. – Вип. 4 – С. 157–163.

3. Петренко В.Ф. Психосемантика сознания / В.Ф. Петренко. – М.: Издательство МГУ, 1988. – 207 с.

4. Аверкин А.Н. Нечеткие множества в моделях управления и искуственного интеллекта / А.Н. Аверкин, И.З. Батыршин, А.Ф. Блишун. – М.: Наука, 1986. – 312 с.

5. Тиори Т. Проектирование структур баз даннях: В 2-х кн. / Т. Тиори, Дж. Фрай. – М.: Мир, 1985. – 288 с.

6. Дюран Б. Кластерныйанализ / Б. Дюран, П. Оделл. – М.: Статистика, 1977. – 128 с.

7. Кук Н.М. Формальная методология приобретения и представления экспертных знаний / Н.М. Кук, Дж. Макдональд // ТИИЭР. – 1986. – Т. 74. – №10. – С. 145–155.

8. Gruber T.R. A translation approach to portable ontologies // Knowledge Acquisition. – 1993. – №5 (2). – P. 199–220.

9. Гаврилова Т.А. Представление знаний в экспертной диагностической системе АВ-ТАНТЕСТ / Т.А. Гаврилова // Изв. АН СССР. Техническая кибернетика. – 1984. – №5. – С. 165–173.

10. Франселла Ф. Новый метод исследования личности: руководство по репертуарным личностным методикам / Ф. Франселла, Д. Баннистер. – М.: Прогресс, 1987. – 588 с.

11. Похилько В.И. Система КЕПУ / В.И. Похилько, Н.Н. Страхов. – М.: МГУ, 1990. – 35 с.

12. Терехина А.Ю. Представление структуры знаний методами многомерного шкалирования / А.Ю. Терехина. – М.: ВИНИТИ, 1988. – 97 с.

13. Шенк Р. Обработка концептуальной информации / Р. Шенк. – М.: Энергия, 1980. – 361 с.

14. Bosse J.H. Transforming repertory grids to shell-based knowledge based using AQUINAS, a knowledge acquisition workbench / Bosse J.H., Bradshaw J.H., Shema D.B. // Proceedings of the AAAI-88 Integration of Knowledge Acquisition and Performance Systems Workshop. St. Paul.

15. Дэйвисон М. Многомерное шкалирование. Методы наглядного представления данных / М. Дэйвисон. – М.: Финансы и статистика, 1988. – 254 с.

16. Musen M.A. Automated support for building and extending expert models // Machine Learning, 4. – 1989. – pp. 347–376.

17. TOVE, 1999. TOVE Manual. – Department of Industrial Engeneering, University of Toronto.

18. Kuehn O. Corporate Memories for Knowledge Management in Industrial Practice: Prospects and Challenges / Kuehn O., Abecker A. – 1998. – 189 p.

19. Assadi H. Knowledge acquisition from texts. Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics (ACL’97), Madrid? Spain, 1997.

20. Kelly G.A. The Psychology of Personal Constructs. – N.Y.: Norton, 1955. – 493 p.

21. E. Fiesler and H.J. Caulfield, «Neural network formalization», Computer Standarts and Interfaces, 1994 – vol. 16 (3), – pp. 231–239.

22. Maedche A. Ontology learning for the semantic web / Maedche A., Staab S. // IEEE Intelligent Systems 16 (2). – 2001. – pp. 72–79.

23. L. Smith. Using a framework to specify a network of temporal neurons, Technical Report, University of Stirling, 1996. – 289 p.

24. Furna G.W. Multitrees: Enriching and Reusing Hierarchical Structure // Human Factors in Computing Systems. Conference Proceedings. Boston, Ms, 1994. – pp. 330–334.

25. M.A. Atencia, G. Joya and F. Sandoval, «A formal model for definition and simulation of generic neural networks», Neural Processing Letters, Kluwer Academic Publishers. – vol. 11. – 2000. – pp. 87–105.